Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Test Mol Biomarkers ; 25(10): 674-682, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34672771

RESUMO

Background: Mutations in the fibroblast growth factor receptor 3 (FGFR3) gene are related to skeletal dysplasias (SDs): acondroplasia (ACH), hypochodroplasia (HCH) and type I (TDI) and II (TDII) tanatophoric dysplasias. This study was designed to standardize and implement a high-resolution melting (HRM) technique to identify mutations in patients with these phenotypes. Methods: Initially, FGFR3 gene segments from 84 patients were PCR amplified and subjected to Sanger sequencing. Samples from 29 patients positive for mutations were analyzed by HRM. Results: Twelve of the patients FGFR3 mutations had ACH (six g.16081 G > A, three g.16081 G > C and three g.16081 G > A + g.16002 C > T); thirteen of patients with HCH had FGFR3 mutations (eight g.17333 C > A, five g.17333 C > G and five were negative); and four patients with DTI had FGFR3 mutations (three g.13526 C > T and one g.16051G > T and two patients with DTII (presented mutation g.17852 A > G). When analyzing the four SDs altogether, an overlap of the dissociation curves was observed, making genotyping difficult. When analyzed separately, however, the HRM analysis method proved to be efficient for discriminating among the mutations for each SD type, except for those patients carrying additional polymorphism concomitant to the recurrent mutation. Conclusion: We conclude that for recurrent mutations in the FGFR3 gene, that the HRM technique can be used as a faster, reliable and less expensive genotyping routine for the diagnosis of these pathologies than Sanger sequencing.


Assuntos
Acondroplasia/diagnóstico , Osso e Ossos/anormalidades , Análise Mutacional de DNA/métodos , Nanismo/diagnóstico , Deformidades Congênitas dos Membros/diagnóstico , Lordose/diagnóstico , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Acondroplasia/genética , Adolescente , Criança , Pré-Escolar , Nanismo/genética , Feminino , Humanos , Lactente , Recém-Nascido , Deformidades Congênitas dos Membros/genética , Lordose/genética , Masculino , Mutação
2.
Mol Syndromol ; 9(2): 92-99, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29593476

RESUMO

Mutations in the fibroblast growth factor receptor 3 gene (FGFR3) cause achondroplasia (ACH), hypochondroplasia (HCH), and thanatophoric dysplasia types I and II (TDI/TDII). In this study, we performed a genetic study of 123 Brazilian patients with these phenotypes. Mutation hotspots of the FGFR3 gene were PCR amplified and sequenced. All cases had recurrent mutations related to ACH, HCH, TDI or TDII, except for 2 patients. One of them had a classical TDI phenotype but a typical ACH mutation (c.1138G>A) in combination with a novel c.1130T>C mutation predicted as being pathogenic. The presence of the second c.1130T>C mutation likely explained the more severe phenotype. Another atypical patient presented with a compound phenotype that resulted from a combination of ACH and X-linked spondyloepiphyseal dysplasia tarda (OMIM 313400). Next-generation sequencing of this patient's DNA showed double heterozygosity for a typical de novo ACH c.1138G>A mutation and a maternally inherited TRAPPC2 c.6del mutation. All mutations were confirmed by Sanger sequencing. A pilot study using high-resolution melting (HRM) technique was also performed to confirm several mutations identified through sequencing. We concluded that for recurrent FGFR3 mutations, HRM can be used as a faster, reliable, and less expensive genotyping test than Sanger sequencing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...