RESUMO
Leachate toxicity using bioindicators such as microcrustaceans and earthworms has not been fully elucidated. These bioindicators are traditionally determined through physicochemical and microbiological analyses. The ecotoxicological assessment of leachate using indicator organisms from different environments is a technique to ensure the treatment and safe disposal of this effluent with minimum impact on human health and the environment. The current study aimed to evaluate the ecotoxicological responses of Daphnia magna and Eisenia andrei in landfill leachate, identifying which organism was more sensitive to this effluent. The leachate used in ecotoxicological tests was collected at the Campina Grande Sanitary Landfill (ASCG), Paraíba, Brazil. The leachate sample contained a high content of organic matter in the form of chemical oxygen demand (19496.86 mg.L-1) and ammoniacal nitrogen (2198.00 mg.NL-1), in addition to metals with carcinogenic potential, such as Cr (0.64 mg.L-1) and Fe (1.16 mg.L-1). The exposure of Daphnia magna to the leachate showed that the effluent is harmful to aquatic organisms, obtaining an EC 50, 48 h = 1.22%, FT of 128 and a TU of 81.96%. Among the contaminant concentrations tested in Eisenia andrei, 57% (59.28 mL.kg-1) caused the highest lethality, causing the death of 21 earthworms within 72 hours of exposure. The avoidance test showed that exposure to leachate concentrations between 10.38 and 39.86 mL.kg-1 led to the leakage of earthworms, and habitat loss was observed at a concentration of 55.80 mL.kg-1, in which leak response (LR) ≥80% was obtained. This study demonstrates that the mentioned organisms are suitable for ecotoxicological tests in landfill leachate. Moreover, the microcrustacean Daphnia magna showed the most significant sensitivity, presenting a rapid ecotoxicological response to the leachate.