Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2402464, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952077

RESUMO

Phase transitions are typically quantified using order parameters, such as crystal lattice distances and radial distribution functions, which can identify subtle changes in crystalline materials or high-contrast phases with large structural differences. However, the identification of phases with high complexity, multiscale organization and of complex patterns during the structural fluctuations preceding phase transitions, which are essential for understanding the system pathways between phases, is challenging for those traditional analyses. Here, it is shown that for two model systems- thermotropic liquid crystals and a lyotropic water/surfactant mixtures-graph theoretical (GT) descriptors can successfully identify complex phases combining molecular and nanoscale levels of organization that are hard to characterize with traditional methodologies. Furthermore, the GT descriptors also reveal the pathways between the different phases. Specifically, centrality parameters and node-based fractal dimension quantify the system behavior preceding the transitions, capturing fluctuation-induced breakup of aggregates and their long-range cooperative interactions. GT parameterization can be generalized for a wide range of chemical systems and be instrumental for the growth mechanisms of complex nanostructures.

2.
Nature ; 601(7893): 366-373, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046606

RESUMO

Chirality is a unifying structural metric of biological and abiological forms of matter. Over the past decade, considerable clarity has been achieved in understanding the chemistry and physics of chiral inorganic nanoparticles1-4; however, little is known about their effects on complex biochemical networks5,6. Intermolecular interactions of biological molecules and inorganic nanoparticles show some commonalities7-9, but these structures differ in scale, in geometry and in the dynamics of chiral shapes, which can both impede and strengthen their mirror-asymmetric complexes. Here we show that achiral and left- and right-handed gold biomimetic nanoparticles show different in vitro and in vivo immune responses. We use irradiation with circularly polarized light (CPL) to synthesize nanoparticles with controllable nanometre-scale chirality and optical anisotropy factors (g-factors) of up to 0.4. We find that binding of nanoparticles to two proteins from the family of adhesion G-protein-coupled receptors (AGPCRs)-namely cluster-of-differentiation 97 (CD97) and epidermal-growth-factor-like-module receptor 1 (EMR1)-results in the opening of mechanosensitive potassium-efflux channels, the production of immune signalling complexes known as inflammasomes, and the maturation of mouse bone-marrow-derived dendritic cells. Both in vivo and in vitro immune responses depend monotonically on the g-factors of the nanoparticles, indicating that nanoscale chirality can be used to regulate the maturation of immune cells. Finally, left-handed nanoparticles show substantially higher (1,258-fold) efficiency compared with their right-handed counterparts as adjuvants for vaccination against the H9N2 influenza virus, opening a path to the use of nanoscale chirality in immunology.


Assuntos
Proteínas de Ligação ao Cálcio , Células Dendríticas , Inflamassomos , Nanopartículas Metálicas , Receptores Acoplados a Proteínas G , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Dendríticas/imunologia , Ouro , Vírus da Influenza A Subtipo H9N2 , Mecanotransdução Celular , Nanopartículas Metálicas/química , Camundongos , Canais de Potássio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estereoisomerismo
3.
Science ; 371(6536): 1368-1374, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33632891

RESUMO

Chiral assemblies of plasmonic nanoparticles are known for strong circular dichroism but not for high optical asymmetry, which is limited by the unfavorable combination of electrical and magnetic field components compounded by strong scattering. Here, we show that these limitations can be overcome by the long-range organization of nanoparticles in a manner similar to the liquid crystals and found in helical assemblies of gold nanorods with human islet amyloid polypeptides. A strong, polarization-dependent spectral shift and the reduced scattering of energy states with antiparallel orientation of dipoles activated in assembled helices increased optical asymmetry g-factors by a factor of more than 4600. The liquid crystal-like color variations and the nanorod-accelerated fibrillation enable drug screening in complex biological media. Improvement of long-range order can also provide structural guidance for the design of materials with high optical asymmetry.

4.
Science ; 368(6491): 642-648, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32273399

RESUMO

The structural complexity of composite biomaterials and biomineralized particles arises from the hierarchical ordering of inorganic building blocks over multiple scales. Although empirical observations of complex nanoassemblies are abundant, the physicochemical mechanisms leading to their geometrical complexity are still puzzling, especially for nonuniformly sized components. We report the self-assembly of hierarchically organized particles (HOPs) from polydisperse gold thiolate nanoplatelets with cysteine surface ligands. Graph theory methods indicate that these HOPs, which feature twisted spikes and other morphologies, display higher complexity than their biological counterparts. Their intricate organization emerges from competing chirality-dependent assembly restrictions that render assembly pathways primarily dependent on nanoparticle symmetry rather than size. These findings and HOP phase diagrams open a pathway to a large family of colloids with complex architectures and unusual chiroptical and chemical properties.

5.
Molecules ; 16(7): 5807-21, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21743388

RESUMO

An imidazolium tetrasubstituted cationic porphyrin derivative (the free base and its Zn(II) complex) with five-membered heterocyclic groups in the meso-positions were synthesized using microwave irradiation, and the compounds obtained characterized by (1)H-NMR and mass spectrometry. We observed that under microwave irradiation the yield is similar to when the synthesis is performed under conventional heating, however, the time required to prepare the porphyrins decreases enormously. In order to investigate the electronic state of these compounds, we employed UV-Vis and fluorescence spectroscopy combined with quantum chemical calculations. The results reveal the presence, in both compounds, of a large number of electronic states involving the association between the Soret and a blue-shifted band. The Soret band in both compounds also shows a considerable solvent dependence. As for emission, these compounds present low quantum yield at room temperature and no solvent influence on the fluorescence spectra was observed.


Assuntos
Porfirinas/química , Porfirinas/síntese química , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...