Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Synapse ; 74(7): e22149, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31975491

RESUMO

Dopamine (DA) modulates basal ganglia (BG) activity for initiation and execution of goal-directed movements and habits. While most studies are aimed to striatal function, the cellular and molecular mechanisms underlying dopaminergic regulation in other nuclei of the BG are not well understood. Therefore, we set to analyze the dopaminergic modulation occurring in subthalamo-nigral synapse, in both pars compacta (SNc) and pars reticulata (SNr) neurons, because these synapses are important for the integration of information previously processed in striatum and globus pallidus. In this study, electrophysiological and pharmacological evidence of dopaminergic modulation on glutamate release through calcium channels is presented. Using paired pulse ratio (PPR) measurements and selective blockers of these ionic channels, together with agonists and antagonists of DA D2 -like receptors, we found that blockade of the CaV 3 family occludes the presynaptic inhibition produced by the activation of DA receptors pharmacologically profiled as D3 -type in the STh-SNc synapses. On the contrast, the blockade of CaV 2 channels, but not CaV 3, occlude with the effect of the D3 agonist, PD 128907, in the STh-SNr synapse. The functional role of this differential distribution of calcium channels that modulate the release of glutamate in the SN implies a fine adjustment of firing for both classes of neurons. Dopaminergic neurons of the SNc establish a DA tone within the SN based on the excitatory/inhibitory inputs; such tone may contribute to processing information from subthalamic nucleus and could also be involved in pathological DA depletion that drives hyperexcitation of SNr neurons.


Assuntos
Canais de Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Substância Negra/metabolismo , Subtálamo/metabolismo , Potenciais Sinápticos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/fisiologia , Ácido Glutâmico/metabolismo , Masculino , Ratos , Ratos Wistar , Substância Negra/citologia , Substância Negra/fisiologia , Subtálamo/citologia , Subtálamo/fisiologia
2.
Synapse ; 72(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29136290

RESUMO

Potassium channels play an important role in modulating synaptic activity both at presynaptic and postsynaptic levels. We have shown before that presynaptically located KV and KIR channels modulate the strength of corticostriatal synapses in rat brain, but the role of other types of potassium channels at these synapses remains largely unknown. Here, we show that calcium-dependent potassium channels BK-type but not SK-type channels are located presynaptically in corticostriatal synapses. We stimulated cortical neurons in rat brain slices and recorded postsynaptic excitatory potentials (EPSP) in medium spiny neurons (MSN) in dorsal neostriatum. By using a paired pulse protocol, we induced synaptic facilitation before applying either BK- or SK-specific toxins. Thus, we found that blockage of BKCa with iberiotoxin (10 nM) reduces synaptic facilitation and increases the amplitude of the EPSP, while exposure to SK-blocker apamin (100 nM) has no effect. Additionally, we induced train action potentials on striatal MSN by current injection before and after the exposure to KCa toxins. We found that the action potential becomes broader when the MSN is exposed to iberiotoxin, although it has no impact on frequency. In contrast, exposure to apamin results in loss of afterhyperpolarization phase and an increase of spike frequency. Therefore, we concluded that postsynaptic SK channels are involved in afterhyperpolarization and modulation of spike frequency while the BK channels are involved on the late repolarization phase of the action potential. Altogether, our results show that calcium-dependent potassium channels modulate both input towards and output from the striatum.


Assuntos
Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Neurônios/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Sinapses/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Apamina/farmacologia , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos Wistar , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Técnicas de Cultura de Tecidos
3.
Radiographics ; 31(6): 1741-55, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21997992

RESUMO

The temporal bone anatomy is complex, with many critical structures in close association with one another. The temporal bone region comprises cranial nerves V, VI, VII, and VIII; vascular structures such as the internal carotid and middle meningeal arteries; sigmoid sinus; jugular bulb; and sensorineural and membranous structures of the inner ear. Most temporal bone fractures are a result of high-energy blunt head trauma. Multidetector computed tomography (CT) plays a fundamental role in the initial evaluation of patients with polytrauma in the emergency department. Multidetector CT may help identify important structural injuries that may have devastating complications such as sensorineural hearing loss, conductive hearing loss, dizziness and balance dysfunction, perilymphatic fistulas, cerebrospinal fluid leaks, facial nerve paralysis, and vascular injury. Although classifying temporal bone fractures helps physicians understand and predict trauma-associated complications and guide treatment, identifying injury to critical structures is more important for guiding management and determining prognosis than is simply classifying temporal bone fractures into a general category. Many temporal bone fractures and complications may be readily identified and characterized at routine cervical, maxillofacial, and head multidetector CT performed in patients with polytrauma, without the need for dedicated temporal bone multidetector CT. Dedicated temporal bone multidetector CT should be considered when there is a high degree of suspicion for temporal bone fractures and no fractures are identified at head, cervical, or maxillofacial CT.


Assuntos
Serviço Hospitalar de Emergência , Fraturas Cranianas/diagnóstico por imagem , Osso Temporal/lesões , Tomografia Computadorizada por Raios X/métodos , Humanos , Imageamento Tridimensional , Osso Temporal/anatomia & histologia
4.
Radiographics ; 31(1): 81-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21257934

RESUMO

As the largest tarsal bone and the most inferior bone in the body, the calcaneus is responsible for supporting the axial load from the weight of the body. It is most commonly fractured after a fall from a height in which axial loads exceed its support capacity. Calcaneal fractures account for 60% of all tarsal fractures. Conventional radiography is commonly used for initial evaluation of calcaneal injury but has the typical disadvantages of two-dimensional imaging. Modern assessment of calcaneal fractures relies heavily on multidetector computed tomography (CT), which allows better visualization and characterization of fracture lines and fragment displacement. Calcaneal fractures observed at CT have been divided into intra- and extraarticular fractures on the basis of subtalar joint involvement. The Sanders classification system for intraarticular fractures is the most commonly used system because it correlates with clinical outcomes and involves less interobserver variability. The classification of extraarticular fractures has been less controversial and makes use of anatomic landmarks on the calcaneus to divide the bone into anterior, middle, and posterior areas. Soft-tissue involvement is an important aspect of calcaneal fracture assessment because it has been linked with poor functional outcomes. Familiarity with the normal anatomy of the calcaneus, the classification of calcaneal fractures, and the various complications of these fractures is essential for treatment assessment, especially if surgical intervention is required.


Assuntos
Calcâneo/diagnóstico por imagem , Calcâneo/lesões , Fraturas Ósseas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Calcâneo/anatomia & histologia , Fraturas Ósseas/classificação , Fraturas Ósseas/complicações , Fraturas Ósseas/terapia , Calcanhar/diagnóstico por imagem , Humanos , Fraturas Intra-Articulares/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...