Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Osteoporos Rep ; 21(2): 173-183, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943599

RESUMO

PURPOSE OF REVIEW: Chromosome region 7q31.31, also known as the CPED1-WNT16 locus, is robustly associated with BMD and fracture risk. The aim of the review is to highlight experimental studies examining the function of genes at the CPED1-WNT16 locus. RECENT FINDINGS: Genes that reside at the CPED1-WNT16 locus include WNT16, FAM3C, ING3, CPED1, and TSPAN12. Experimental studies in mice strongly support the notion that Wnt16 is necessary for bone mass and strength. In addition, roles for Fam3c and Ing3 in regulating bone morphology in vivo and/or osteoblast differentiation in vitro have been identified. Finally, a role for wnt16 in dually influencing bone and muscle morphogenesis in zebrafish has recently been discovered, which has brought forth new questions related to whether the influence of WNT16 in muscle may conspire with its influence in bone to alter BMD and fracture risk.


Assuntos
Fraturas Ósseas , Osteoporose , Animais , Camundongos , Densidade Óssea/genética , Fraturas Ósseas/genética , Osteoporose/genética , Proteínas Wnt/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
2.
PLoS One ; 17(12): e0266433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36580465

RESUMO

Dysfunction of the primary cilium, a microtubule-based signaling organelle, leads to genetic conditions called ciliopathies. Hedgehog (Hh) signaling is mediated by the primary cilium in vertebrates and is therefore implicated in ciliopathies; however, it is not clear which immortal cell lines are the most appropriate for modeling pathway response in human disease; therefore, we systematically evaluated Hh in five commercially available, immortal mammalian cell lines: ARPE-19, HEK293T, hTERT RPE-1, NIH/3T3, and SH-SY5Y. Under proper conditions, all of the cell lines ciliated adequately for our subsequent experiments, except for SH-SY5Y which were excluded from further analysis. hTERT RPE-1 and NIH/3T3 cells relocalized Hh pathway components Smoothened (SMO) and GPR161 and upregulated Hh target genes in response to pathway stimulation. In contrast, pathway stimulation did not induce target gene expression in ARPE-19 and HEK293T cells, despite SMO and GPR161 relocalization. These data indicate that human hTERT RPE-1 cells and murine NIH/3T3 cells, but not ARPE-19 and HEK293T cells, are suitable for modeling the role of Hh signaling in ciliopathies.


Assuntos
Proteínas Hedgehog , Neuroblastoma , Humanos , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Cílios/metabolismo , Células HEK293 , Neuroblastoma/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Mamíferos/metabolismo
3.
PLoS Genet ; 18(11): e1010496, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36346812

RESUMO

Bone and muscle are coupled through developmental, mechanical, paracrine, and autocrine signals. Genetic variants at the CPED1-WNT16 locus are dually associated with bone- and muscle-related traits. While Wnt16 is necessary for bone mass and strength, this fails to explain pleiotropy at this locus. Here, we show wnt16 is required for spine and muscle morphogenesis in zebrafish. In embryos, wnt16 is expressed in dermomyotome and developing notochord, and contributes to larval myotome morphology and notochord elongation. Later, wnt16 is expressed at the ventral midline of the notochord sheath, and contributes to spine mineralization and osteoblast recruitment. Morphological changes in wnt16 mutant larvae are mirrored in adults, indicating that wnt16 impacts bone and muscle morphology throughout the lifespan. Finally, we show that wnt16 is a gene of major effect on lean mass at the CPED1-WNT16 locus. Our findings indicate that Wnt16 is secreted in structures adjacent to developing bone (notochord) and muscle (dermomyotome) where it affects the morphogenesis of each tissue, thereby rendering wnt16 expression into dual effects on bone and muscle morphology. This work expands our understanding of wnt16 in musculoskeletal development and supports the potential for variants to act through WNT16 to influence bone and muscle via parallel morphogenetic processes.


Assuntos
Notocorda , Peixe-Zebra , Animais , Peixe-Zebra/genética , Coluna Vertebral , Músculos , Morfogênese/genética , Larva , Proteínas de Peixe-Zebra/genética , Proteínas Wnt/genética
4.
Annu Rev Genomics Hum Genet ; 23: 301-329, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35655331

RESUMO

The Joubert syndrome (JS), Meckel syndrome (MKS), and nephronophthisis (NPH) ciliopathy spectrum could be the poster child for advances and challenges in Mendelian human genetics over the past half century. Progress in understanding these conditions illustrates many core concepts of human genetics. The JS phenotype alone is caused by pathogenic variants in more than 40 genes; remarkably, all of the associated proteins function in and around the primary cilium. Primary cilia are near-ubiquitous, microtubule-based organelles that play crucial roles in development and homeostasis. Protruding from the cell, these cellular antennae sense diverse signals and mediate Hedgehog and other critical signaling pathways. Ciliary dysfunction causes many human conditions termed ciliopathies, which range from multiple congenital malformations to adult-onset single-organ failure. Research on the genetics of the JS-MKS-NPH spectrum has spurred extensive functional work exploring the broadly important role of primary cilia in health and disease. This functional work promises to illuminate the mechanisms underlying JS-MKS-NPH in humans, identify therapeutic targets across genetic causes, and generate future precision treatments.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Anormalidades do Olho , Doenças Renais Policísticas , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Cerebelo/anormalidades , Cerebelo/metabolismo , Cerebelo/patologia , Criança , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Transtornos da Motilidade Ciliar , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Encefalocele , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Proteínas Hedgehog/metabolismo , Humanos , Doenças Renais Císticas , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Retina/anormalidades , Retina/metabolismo , Retina/patologia , Retinose Pigmentar
5.
Skelet Muscle ; 10(1): 29, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059738

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder and is one of the most common muscular dystrophies. There are currently few effective therapies to treat the disease, although many small-molecule approaches are being pursued. Certain histone deacetylase inhibitors (HDACi) have been shown to ameliorate DMD phenotypes in mouse and zebrafish animal models. The HDACi givinostat has shown promise for DMD in clinical trials. However, beyond a small group of HDACi, other classes of epigenetic small molecules have not been broadly and systematically studied for their benefits for DMD. METHODS: We used an established animal model for DMD, the zebrafish dmd mutant strain sapje. A commercially available library of epigenetic small molecules was used to treat embryonic-larval stages of dmd mutant zebrafish. We used a quantitative muscle birefringence assay in order to assess and compare the effects of small-molecule treatments on dmd mutant zebrafish skeletal muscle structure. RESULTS: We performed a novel chemical-combination screen of a library of epigenetic compounds using the zebrafish dmd model. We identified candidate pools of epigenetic compounds that improve skeletal muscle structure in dmd mutant zebrafish. We then identified a specific combination of two HDACi compounds, oxamflatin and salermide, that ameliorated dmd mutant zebrafish skeletal muscle degeneration. We validated the effects of oxamflatin and salermide on dmd mutant zebrafish in an independent laboratory. Furthermore, we showed that the combination of oxamflatin and salermide caused increased levels of histone H4 acetylation in zebrafish larvae. CONCLUSIONS: Our results provide novel, effective methods for performing a combination of small-molecule screen in zebrafish. Our results also add to the growing evidence that epigenetic small molecules may be promising candidates for treating DMD.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Células Cultivadas , Descoberta de Drogas , Epigênese Genética , Ensaios de Triagem em Larga Escala , Ácidos Hidroxâmicos/farmacologia , Proteínas de Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Naftóis/farmacologia , Fenilpropionatos/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
J Clin Invest ; 130(8): 4423-4439, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32453716

RESUMO

Joubert syndrome (JBTS) is a recessive neurodevelopmental ciliopathy characterized by a pathognomonic hindbrain malformation. All known JBTS genes encode proteins involved in the structure or function of primary cilia, ubiquitous antenna-like organelles essential for cellular signal transduction. Here, we used the recently identified JBTS-associated protein armadillo repeat motif-containing 9 (ARMC9) in tandem-affinity purification and yeast 2-hybrid screens to identify a ciliary module whose dysfunction underlies JBTS. In addition to the known JBTS-associated proteins CEP104 and CSPP1, we identified coiled-coil domain containing 66 (CCDC66) and TOG array regulator of axonemal microtubules 1 (TOGARAM1) as ARMC9 interaction partners. We found that TOGARAM1 variants cause JBTS and disrupt TOGARAM1 interaction with ARMC9. Using a combination of protein interaction analyses, characterization of patient-derived fibroblasts, and analysis of CRISPR/Cas9-engineered zebrafish and hTERT-RPE1 cells, we demonstrated that dysfunction of ARMC9 or TOGARAM1 resulted in short cilia with decreased axonemal acetylation and polyglutamylation, but relatively intact transition zone function. Aberrant serum-induced ciliary resorption and cold-induced depolymerization in ARMC9 and TOGARAM1 patient cell lines suggest a role for this new JBTS-associated protein module in ciliary stability.


Assuntos
Anormalidades Múltiplas , Proteínas do Domínio Armadillo , Cerebelo/anormalidades , Cílios , Anormalidades do Olho , Doenças Renais Císticas , Retina/anormalidades , Proteínas de Peixe-Zebra , Peixe-Zebra , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Acetilação , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Sistemas CRISPR-Cas , Cerebelo/metabolismo , Cílios/genética , Cílios/metabolismo , Modelos Animais de Doenças , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Retina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Mitochondrion ; 22: 1-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724235

RESUMO

Mitochondrial dysfunction has recently been implicated as an underlying factor to several common neurodegenerative diseases, including Parkinson's disease, Alzheimer's and amyotrophic lateral sclerosis (ALS). Valosin containing protein (VCP)-associated multisystem proteinopathy is a new hereditary disorder associated with inclusion body myopathy, Paget disease of bone (PDB), frontotemporal dementia (FTD) and ALS. VCP has been implicated in several transduction pathways including autophagy, apoptosis and the PINK1/Parkin cascade of mitophagy. In this report, we characterized VCP patient and mouse fibroblasts/myoblasts to examine their mitochondrial dynamics and bioenergetics. Using the Seahorse XF-24 technology, we discovered decreased spare respiratory capacity (measurement of extra ATP that can be produced by oxidative phosphorylation in stressful conditions) and increased ECAR levels (measurement of glycolysis), and proton leak in VCP human fibroblasts compared with age- and sex-matched unaffected first degree relatives. We found decreased levels of ATP and membrane potential, but higher mitochondrial enzyme complexes II+III and complex IV activities in the patient VCP myoblasts when compared to the values of the control cell lines. These results suggest that mutations in VCP affect the mitochondria's ability to produce ATP, thereby resulting in a compensatory increase in the cells' mitochondrial complex activity levels. Thus, this novel in vitro model may be useful in understanding the pathophysiology and discovering new drug targets of mitochondrial dynamics and physiology to modify the clinical phenotype in VCP and related multisystem proteinopathies (MSP).


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metabolismo Energético , Mitocôndrias/fisiologia , Doenças Neurodegenerativas/patologia , Deficiências na Proteostase/patologia , Trifosfato de Adenosina/análise , Animais , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/análise , Fibroblastos/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mioblastos/metabolismo , Proteína com Valosina
8.
Neurobiol Dis ; 76: 77-86, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25684537

RESUMO

Genetic defects in the UBE3A gene, which encodes for the imprinted E6-AP ubiquitin E3 ligase (UBE3A), is responsible for the occurrence of Angelman syndrome (AS), a neurodegenerative disorder which arises in 1 out of every 12,000-20,000 births. Classical symptoms of AS include delayed development, impaired speech, and epileptic seizures with characteristic electroencephalography (EEG) readings. We have previously reported impaired mitochondrial structure and reduced complex III in the hippocampus and cerebellum in the Ube3a(m-/p+) mice. CoQ10 supplementation restores the electron flow to the mitochondrial respiratory chain (MRC) to ultimately increase mitochondrial antioxidant capacity. A number of recent studies with CoQ10 analogues seem promising in providing therapeutic benefit to patients with a variety of disorders. CoQ10 therapy has been reported to be safe and relatively well-tolerated at doses as high as 3000mg/day in patients with disorders of CoQ10 biosynthesis and MRC disorders. Herein, we report administration of idebenone, a potent CoQ10 analogue, to the Ube3a(m-/p+) mouse model corrects motor coordination and anxiety levels, and also improves the expression of complexes III and IV in hippocampus CA1 and CA2 neurons and cerebellum in these Ube3a(m-/p+) mice. However, treatment with idebenone illustrated no beneficial effects in the reduction of oxidative stress. To our knowledge, this is the first study to suggest an improvement in mitochondrial respiratory chain dysfunction via bioenergetics modulation with a CoQ10 analogue. These findings may further elucidate possible cellular and molecular mechanism(s) and ultimately a clinical therapeutic approach/benefit for patients with Angelman syndrome.


Assuntos
Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/metabolismo , Antioxidantes/administração & dosagem , Transporte de Elétrons/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ubiquinona/análogos & derivados , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ubiquinona/administração & dosagem , Ubiquitina-Proteína Ligases/genética
9.
J Endod ; 38(2): 226-31, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22244642

RESUMO

INTRODUCTION: The shaping ability of root canal instruments is determined by a complex interrelationship of parameters such as cross-sectional design and the ability to remove debris and the smear layer. The self-adjusting file (SAF) consists of a hollow, flexible instrument in the form of a compressible, thin-walled, pointed cylinder. The aim of this study was to compare the SAF with the ProTaper rotary file system, evaluating debris and smear layer removal and the presence of bacteria by using microbiological and scanning electron microscopy (SEM) evaluation. METHODS: Fifty maxillary premolars were inoculated with Enterococcus faecalis for 30 days and then randomly distributed into 2 groups. Group 1 was prepared with ProTaper rotary instruments and irrigated with 30-gauge side-vented needles. Group 2 was prepared by using the SAF system with continuous irrigation. Bacteriologic samples were taken before and after preparation. All samples were then longitudinally split and analyzed under scanning electron microscopy. The scoring was carried out by 3 blinded evaluators. RESULTS: In group 1, 40% of samples had negative cultures with postinstrumentation samples taken with paper points (S2a) and 45% with postinstrumentation dentin samples (S2b). In group 2, 20% of samples had negative cultures with S2a and 15% with S2b. Intragroup analyses evaluating the reduction in the number of colony-forming units (CFUs) from S1 to S2a and S2b demonstrated both preparation techniques were highly effective (P < .01). Further reduction of CFUs was observed when comparing S2a and S2b in group 1 (P < .05), whereas no difference was observed in group 2. Intergroup analysis demonstrated a statistically significant difference of CFUs at S2a and S2b (P < .05). SEM scores were consistent with the microbiology findings. CONCLUSIONS: The SAF system does not allow control of the apical enlargement, thus limiting the ability of the irrigants to achieve effective and predictable disinfection.


Assuntos
Cavidade Pulpar/ultraestrutura , Enterococcus faecalis/isolamento & purificação , Preparo de Canal Radicular/instrumentação , Carga Bacteriana , Técnicas Bacteriológicas , Cavidade Pulpar/microbiologia , Dentina/microbiologia , Dentina/ultraestrutura , Desenho de Equipamento , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Dente Molar/microbiologia , Dente Molar/ultraestrutura , Irrigantes do Canal Radicular/administração & dosagem , Preparo de Canal Radicular/métodos , Método Simples-Cego , Camada de Esfregaço , Hipoclorito de Sódio/administração & dosagem , Propriedades de Superfície , Irrigação Terapêutica/instrumentação , Ápice Dentário/microbiologia , Ápice Dentário/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...