Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 20(6): 838-847, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29077941

RESUMO

Background: We recently reported an acceptable safety and pharmacokinetic profile of depatuxizumab mafodotin (depatux-m), formerly called ABT-414, plus radiation and temozolomide in newly diagnosed glioblastoma (arm A). The purpose of this study was to evaluate the safety and pharmacokinetics of depatux-m, either in combination with temozolomide in newly diagnosed or recurrent glioblastoma (arm B) or as monotherapy in recurrent glioblastoma (arm C). Methods: In this multicenter phase I dose escalation study, patients received depatux-m (0.5-1.5 mg/kg in arm B, 1.25 mg/kg in arm C) every 2 weeks by intravenous infusion. Maximum tolerated dose (MTD), recommended phase II dose (RP2D), and preliminary efficacy were also determined. Results: Thirty-eight patients were enrolled as of March 1, 2016. The most frequent toxicities were ocular, occurring in 35/38 (92%) patients. Keratitis was the most common grade 3 adverse event observed in 6/38 (16%) patients; thrombocytopenia was the most common grade 4 event seen in 5/38 (13%) patients. The MTD was set at 1.5 mg/kg in arm B and was not reached in arm C. RP2D was declared as 1.25 mg/kg for both arms. Depatux-m demonstrated a linear pharmacokinetic profile. In recurrent glioblastoma patients, the progression-free survival (PFS) rate at 6 months was 30.8% and the median overall survival was 10.7 months. Best Response Assessment in Neuro-Oncology responses were 1 complete and 2 partial responses. Conclusion: Depatux-m alone or in combination with temozolomide demonstrated an acceptable safety and pharmacokinetic profile in glioblastoma. Further studies are currently under way to evaluate its efficacy in newly diagnosed (NCT02573324) and recurrent glioblastoma (NCT02343406).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Adulto , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Neoplasias Encefálicas/patologia , Feminino , Seguimentos , Glioblastoma/patologia , Humanos , Imunoconjugados/administração & dosagem , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Prognóstico , Segurança , Taxa de Sobrevida , Temozolomida/administração & dosagem , Distribuição Tecidual , Adulto Jovem
2.
Eur J Pharmacol ; 684(1-3): 87-94, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22504024

RESUMO

Histamine H(3) receptor antagonists have been widely reported to improve performance in preclinical models of cognition, but more recently efficacy in pain models has also been described. Here, A-960656 ((R)-2-(2-(3-(piperidin-1-yl)pyrrolidin-1-yl)benzo[d]thiazol-6-yl)pyridazin-3(2H)-one) was profiled as a new structural chemotype. A-960656 was potent in vitro in histamine H(3) receptor binding assays (rat K(i)=76 nM, human K(i)=21 nM), and exhibited functional antagonism in blocking agonist-induced [(35)S]GTPγS binding (rat H(3) K(b)=107 nM, human H(3) K(b)=22 nM), and was highly specific for H(3) receptors in broad screens for non-H(3) sites. In a spinal nerve ligation model of neuropathic pain in rat, oral doses of 1 and 3mg/kg were effective 60 min post dosing with an ED(50) of 2.17 mg/kg and a blood EC(50) of 639 ng/ml. In a model of osteoarthritis pain, oral doses of 0.1, 0.3, and 1mg/kg were effective 1h post dosing with an ED(50) of 0.52 mg/kg and a blood EC(50) of 233 ng/ml. The antinociceptive effect of A-960656 in both pain models was maintained after sub-chronic dosing up to 12 days. A-960656 had excellent rat pharmacokinetics (t(1/2)=1.9h, 84% oral bioavailability) with rapid and efficient brain penetration, and was well tolerated in CNS behavioral safety screens. In summary, A-960656 has properties well suited to probe the pharmacology of histamine H(3) receptors in pain. Its potency and efficacy in animal pain models provide support to the notion that histamine H(3) receptor antagonists are effective in attenuating nociceptive processes.


Assuntos
Benzotiazóis/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Neuralgia/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Piridazinas/farmacologia , Receptores Histamínicos H3/metabolismo , Animais , Benzotiazóis/efeitos adversos , Benzotiazóis/metabolismo , Benzotiazóis/farmacocinética , Permeabilidade da Membrana Celular , Inibidores das Enzimas do Citocromo P-450 , Modelos Animais de Doenças , Cães , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Células HEK293 , Coração/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H3/efeitos adversos , Antagonistas dos Receptores Histamínicos H3/metabolismo , Antagonistas dos Receptores Histamínicos H3/farmacocinética , Humanos , Masculino , Osteoartrite do Joelho/tratamento farmacológico , Piridazinas/efeitos adversos , Piridazinas/metabolismo , Piridazinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...