Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(19): 1967-1982.e8, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37734383

RESUMO

Neuroblastoma is the most common extracranial solid tumor in infants, arising from developmentally stalled neural crest-derived cells. Driving tumor differentiation is a promising therapeutic approach for this devastating disease. Here, we show that the CDK4/6 inhibitor palbociclib not only inhibits proliferation but induces extensive neuronal differentiation of adrenergic neuroblastoma cells. Palbociclib-mediated differentiation is manifested by extensive phenotypic and transcriptional changes accompanied by the establishment of an epigenetic program driving expression of mature neuronal features. In vivo palbociclib significantly inhibits tumor growth in mouse neuroblastoma models. Furthermore, dual treatment with retinoic acid resets the oncogenic adrenergic core regulatory circuit of neuroblastoma cells, further suppresses proliferation, and can enhance differentiation, altering gene expression in ways that significantly correlate with improved patient survival. We therefore identify palbociclib as a therapeutic approach to dramatically enhance neuroblastoma differentiation efficacy that could be used in combination with retinoic acid to improve patient outcomes.


Assuntos
Neuroblastoma , Piperazinas , Piridinas , Tretinoína , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Diferenciação Celular , Tretinoína/farmacologia , Neuroblastoma/tratamento farmacológico , Adrenérgicos/uso terapêutico
2.
Biochim Biophys Acta Rev Cancer ; 1877(6): 188805, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162542

RESUMO

Neuroblastoma is a solid, neuroendocrine tumor with divergent clinical behavior ranging from asymptomatic to fatal. The diverse clinical presentations of neuroblastoma are directly linked to the high intra- and inter-tumoral heterogeneity it presents. This heterogeneity is strongly associated with therapeutic resistance and continuous relapses, often leading to fatal outcomes. The development of successful risk assessment and tailored treatment strategies lies in evaluating the extent of heterogeneity via the accurate genetic and epigenetic profiling of distinct cell subpopulations present in the tumor. Recent studies have focused on understanding the molecular mechanisms that drive tumoral heterogeneity in pursuing better therapeutic and diagnostic approaches. This review describes the cellular, genetic, and epigenetic aspects of neuroblastoma heterogeneity. In addition, we summarize the recent findings on three crucial factors that can lead to heterogeneity in solid tumors: the inherent diversity of the progenitor cells, the presence of cancer stem cells, and the influence of the tumor microenvironment.


Assuntos
Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/genética
3.
Front Cell Dev Biol ; 10: 943924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147741

RESUMO

Neuroblastoma is a pediatric tumour that accounts for more than 15% of cancer-related deaths in children. High-risk tumours are often difficult to treat, and patients' survival chances are less than 50%. Retinoic acid treatment is part of the maintenance therapy given to neuroblastoma patients; however, not all tumours differentiate in response to retinoic acid. Within neuroblastoma tumors, two phenotypically distinct cell types have been identified based on their super-enhancer landscape and transcriptional core regulatory circuitries: adrenergic (ADRN) and mesenchymal (MES). We hypothesized that the distinct super-enhancers in these different tumour cells mediate differential response to retinoic acid. To this end, three different neuroblastoma cell lines, ADRN (MYCN amplified and non-amplified) and MES cells, were treated with retinoic acid, and changes in the super-enhancer landscape upon treatment and after subsequent removal of retinoic acid was studied. Using ChIP-seq for the active histone mark H3K27ac, paired with RNA-seq, we compared the super-enhancer landscape in cells that undergo neuronal differentiation in response to retinoic acid versus those that fail to differentiate and identified unique super-enhancers associated with neuronal differentiation. Among the ADRN cells that respond to treatment, MYCN-amplified cells remain differentiated upon removal of retinoic acid, whereas MYCN non-amplified cells revert to an undifferentiated state, allowing for the identification of super-enhancers responsible for maintaining differentiation. This study identifies key super-enhancers that are crucial for retinoic acid-mediated differentiation.

4.
FEBS J ; 285(20): 3849-3869, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30120904

RESUMO

We characterize Rv0474, a putative transcriptional regulatory protein of Mycobacterium tuberculosis, which is found to function as a copper-responsive transcriptional regulator at toxic levels of copper. It is an autorepressor, but at elevated levels (10-250 µm) of copper ions the repression is relieved resulting in an increase in Rv0474 expression. Copper-bound Rv0474 is recruited to the rpoB promoter leading to its repression resulting in the growth arrest of the bacterium. Mutational analysis showed that the helix-turn-helix and leucine zipper domains of Rv0474 are essential for its binding to Rv0474 and rpoB promoters, respectively. The mechanism of Rv0474-mediated rpoB regulation seems to be operational only in pathogenic mycobacteria that can persist inside the host.


Assuntos
Proteínas de Bactérias/genética , Cobre/farmacologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Homologia de Sequência , Células THP-1 , Fatores de Transcrição/metabolismo , Transcrição Gênica
5.
FEBS J ; 283(16): 3056-71, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27334653

RESUMO

Rv3334 protein of Mycobacterium tuberculosis belongs to the MerR family of transcriptional regulators and is upregulated during hypoxia and other stress conditions. Employing GFP reporter constructs, mobility shift assays and ChIP assays, we demonstrate that Rv3334 binds to its own promoter and acts as an autorepressor. We were able to locate a 22 bp palindrome in its promoter that we show to be the cognate binding sequence of Rv3334. Using chase experiments, we could conclusively prove the requirement of this palindrome for Rv3334 binding. Recombinant Rv3334 readily formed homodimers in vitro, which could be necessary for its transcriptional regulatory role in vivo. Although the DNA-binding activity of the protein was abrogated by the presence of certain divalent metal cations, the homodimer formation remained unaffected. In silico predictions and subsequent assays using GFP reporter constructs and mobility shift assays revealed that the expression of ketosteroid regulator gene (kstR), involved in lipid catabolism, is positively regulated by Rv3334. ChIP assays with aerobically grown M. tuberculosis as well as dormant bacteria unambiguously prove that Rv3334 specifically upregulates expression of kstR during dormancy. Our study throws light on the possible role of Rv3334 as a master regulator of lipid catabolism during hypoxia-induced dormancy.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/genética , DNA/metabolismo , Sequências Repetidas Invertidas , Metais Pesados/metabolismo , Mycobacterium tuberculosis/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Multimerização Proteica , Regulação para Cima
6.
FEBS J ; 283(2): 265-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26476134

RESUMO

We isolated an 8 kDa mycobacterial hypothetical protein, Rv3423.1, from the chromatin of human macrophages infected with Mycobacterium tuberculosis H37Rv. Bioinformatics predictions followed by in vitro biochemical assays with purified recombinant protein showed that Rv3423.1 is a novel histone acetyltransferase that acetylates histone H3 at the K9/K14 positions. Transient transfection of macrophages containing GFP-tagged histone H1 with RFP-tagged Rv3423.1 revealed that the protein co-localizes with the chromatin in the nucleus. Co-immunoprecipitation assays confirmed that the Rv3423.1-histone interaction is specific. Rv3423.1 protein was detected in the culture filtrate of virulent but not avirulent M. tuberculosis. Infection of macrophages with recombinant Mycobacterium smegmatis constitutively expressing Rv3423.1 resulted in a significant increase in the number of intracellular bacteria. However, the protein did not seem to offer any growth advantage to free-living recombinant M. smegmatis. It is highly likely that, by binding to the host chromatin, this histone acetyltransferase from M. tuberculosis may manipulate the expression of host genes involved in anti-inflammatory responses to evade clearance and to survive in the intracellular environment.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histona Acetiltransferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Acetilcoenzima A/química , Proteínas de Bactérias/química , Cromatina/metabolismo , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Macrófagos/microbiologia , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/patogenicidade , NAD/metabolismo , Conformação Proteica
7.
Mol Cell Proteomics ; 14(8): 2160-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26025969

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic intervention to prevent reactivation of latent tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Aerobiose , Redes e Vias Metabólicas , Reação em Cadeia da Polimerase , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...