Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(41): 46991-47001, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937073

RESUMO

Many pathogens, such as Pseudomonas aeruginosa and Escherichia coli bacteria can easily attach to surfaces and form stable biofilms. The formation of such biofilms in surfaces presents a problem in environmental, biomedical, and industrial processes, among many others. Aiming to provide a plausible solution to this issue, the anionic and hydrophobic peptide Maximin H5 C-terminally deaminated isoform (MH5C) has been modified with a cysteine in the C-terminal (MH5C-Cys) and coupled to polyethylene glycol (PEG) polymers of varying sizes (i.e., 2 kDa and 5 kDa) to serve as a surface protective coating. Briefly, the MH5C-Cys was bioconjugated to PEG and purified by size exclusion chromatography while the reaction was confirmed via SDS-PAGE and MALDI ToF. Moreover, the preventive antimicrobial activity of the MH5C-Cys-PEG conjugates was performed via the growth curves method, showing inhibition of bacterial growth after 24 h. The efficacy of these peptide-polymer conjugates was extensively characterized via scanning electron microscopy (SEM), minimum inhibition concentration (MIC), minimum biofilm inhibition concentration (MBIC), and minimum biofilm eradication concentration (MBEC) assays to evaluate their ability to eradicate and prevent the biofilms. Interestingly, this work demonstrated a critical PEG polymer weight of 5 kDa as ideal when coupled to the peptide to achieve inhibition and eradication of the biofilm formation in both bacteria strains. According to the MICs (40 µM) and MBICs (300 µM), we can conclude that this conjugate (MH5C-Cys-5 kDa) has an action that prevents/inhibits the formation of biofilms and the eradication of biofilms (MBEC 500 µM). In contrast, the MH5C-Cys peptide with PEG polymer of 2 kDa did not show inhibition or eradication of the biofilms.


Assuntos
Proteínas de Anfíbios/farmacologia , Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Escherichia coli/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas de Anfíbios/química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Polietilenoglicóis/química , Propriedades de Superfície
2.
Nat Cell Biol ; 21(12): 1544-1552, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792378

RESUMO

Multiciliated cells (MCCs) amplify large numbers of centrioles that convert into basal bodies, which are required for producing multiple motile cilia. Most centrioles amplified by MCCs grow on the surface of organelles called deuterosomes, whereas a smaller number grow through the centriolar pathway in association with the two parent centrioles. Here, we show that MCCs lacking deuterosomes amplify the correct number of centrioles with normal step-wise kinetics. This is achieved through a massive production of centrioles on the surface and in the vicinity of parent centrioles. Therefore, deuterosomes may have evolved to relieve, rather than supplement, the centriolar pathway during multiciliogenesis. Remarkably, MCCs lacking parent centrioles and deuterosomes also amplify the appropriate number of centrioles inside a cloud of pericentriolar and fibrogranular material. These data show that the centriole number is set independently of their nucleation platforms and suggest that massive centriole production in MCCs is a robust process that can self-organize.


Assuntos
Centríolos/fisiologia , Cílios/fisiologia , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Xenopus laevis
3.
ACS Omega ; 3(2): 1437-1444, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29503970

RESUMO

In this work, we explore the use of electrochemical methods (i.e., impedance) along with the arsenic-specific aptamer (ArsSApt) to fabricate and study the interfacial properties of an arsenic (As(III)) sensor. The ArsSApt layer was self-assembled on a gold substrate, and upon binding of As(III), a detectable change in the impedimetric signal was recorded because of conformational changes at the interfacial layer. These interfacial changes are linearly correlated with the concentration of arsenic present in the system. This target-induced signal was utilized for the selective detection of As(III) with a linear dynamic range of 0.05-10 ppm and minimum detectable concentrations of ca. 0.8 µM. The proposed system proved to be successful mainly because of the combination of a highly sensitive electrochemical platform and the recognized specificity of the ArsSApt toward its target molecule. Also, the interaction between the ArsSApt and the target molecule (i.e., arsenic) was explored in depth. The obtained results in this work are aimed at proving the development of a simple and environmentally benign sensor for the detection of As(III) as well as in elucidating the possible interactions between the ArsSApt and arsenic molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...