Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Meas Sci Au ; 1(3): 139-146, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34939076

RESUMO

Gaining insight into the timing of cell apoptosis events requires single-cell-resolution measurements of cell viability. We explore the supposition that mechanism-based scrutiny of programmed cell death would benefit from same-cell analysis of both the DNA state (intact vs fragmented) and the protein states, specifically the full-length vs cleaved state of the DNA-repair protein PARP1, which is cleaved by caspase-3 during caspase-dependent apoptosis. To make this same-cell, multimode measurement, we introduce the single-cell electrophoresis-based viability and protein (SEVAP) assay. Using SEVAP, we (1) isolate human breast cancer SKBR3 cells in microwells molded in thin polyacrylamide gels, (2) electrophoretically separate protein molecular states and DNA molecular states-using differences in electrophoretic mobility-from each single-cell lysate, and (3) perform in-gel DNA staining and PARP1 immunoprobing. Performed in an open microfluidic device, SEVAP scrutinized hundreds to thousands of individual SKBR3 cells. In each single-cell lysate separation, SEVAP baseline-resolved fragmented DNA from intact DNA (R s = 5.17) as well as cleaved PARP1 from full-length PARP1 (R s = 0.66). Comparing apoptotic and viable cells showed statistically similar profiles (expression, mobility, peak width) of housekeeping protein ß-tubulin (Mann-Whitney U test). Clustering and cross-correlation analysis of DNA migration and PARP1 migration identified nonapoptotic vs apoptotic cells. Clustering analysis further suggested that cleaved PARP1 is a suitable apoptosis marker for this system. SEVAP is an efficient, multimode, end-point assay designed to elucidate cell-to-cell heterogeneity in mechanism-specific signaling during programmed cell death.

2.
Lab Chip ; 21(12): 2427-2436, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33978041

RESUMO

Protein isoforms play a key role in disease progression and arise from mechanisms involving multiple molecular subtypes, including DNA, mRNA and protein. Recently introduced multimodal assays successfully link genomes and transcriptomes to protein expression landscapes. However, the specificity of the protein measurement relies on antibodies alone, leading to major challenges when measuring different isoforms of the same protein. Here we utilize microfluidic design to perform same-cell profiling of DNA, mRNA and protein isoforms (triBlot) on low starting cell numbers (1-100 s of cells). After fractionation lysis, cytoplasmic proteins are resolved by molecular mass during polyacrylamide gel electrophoresis (PAGE), adding a degree of specificity to the protein measurement, while nuclei are excised from the device in sections termed "gel pallets" for subsequent off-chip nucleic acid analysis. By assaying TurboGFP-transduced glioblastoma cells, we observe a strong correlation between protein expression prior to lysis and immunoprobed protein. We measure both mRNA and DNA from retrieved nuclei, and find that mRNA levels correlate with protein abundance in TurboGFP-expressing cells. Furthermore, we detect the presence of TurboGFP isoforms differing by an estimated <1 kDa in molecular mass, demonstrating the ability to discern different proteoforms with the same antibody probe. By directly relating nucleic acid modifications to protein isoform expression in 1-100 s of cells, the triBlot assay holds potential as a screening tool for novel biomarkers in diseases driven by protein isoform expression.


Assuntos
DNA , Proteômica , Contagem de Células , Eletroforese em Gel de Poliacrilamida , Isoformas de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...