Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-13, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38118140

RESUMO

Encapsulation and nutrient addition in bacterial formulations have disadvantages concerning cell viability during release, storage, and under field conditions. Then, the objective of this work was to encapsulate a bacterial consortium with hydrocarbon-degrading capacities in different matrices composed of cross-linked alginate/ polyvinyl alcohol /halloysite beads (M1, M2, and M3) containing nanoliposomes loaded with or without nutrients and evaluate their viability and release in a liquid medium, and soil (microcosmos). Also, evaluate their capacity to remove total petroleum hydrocarbons (TPH) for 165 days and matrices characterization. The encapsulate consortium showed a quick adaptation to contaminated soil and a percentage of removal (PR) of TPH up to 30% after seven days. All the matrices displayed a PR of up to 90% after 165 days. The matrix M2 displayed significant resistance to degradation and higher cell viability with a PR of 94%. This result supports the encapsulation of bacteria in a sustainable matrix supplemented with nutrients as a well-looked strategy for improving viability and survival and, therefore, enhancing their effectiveness in the remediation of hydrocarbon-contaminated soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...