Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012281, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848441

RESUMO

Understanding the mechanisms that drive HIV expression and latency is a key goal for achieving an HIV cure. Here we investigate the role of the SETD2 histone methyltransferase, which deposits H3K36 trimethylation (H3K36me3), in HIV infection. We show that prevention of H3K36me3 by a potent and selective inhibitor of SETD2 (EPZ-719) leads to reduced post-integration viral gene expression and accelerated emergence of latently infected cells. CRISPR/Cas9-mediated knockout of SETD2 in primary CD4 T cells confirmed the role of SETD2 in HIV expression. Transcriptomic profiling of EPZ-719-exposed HIV-infected cells identified numerous pathways impacted by EPZ-719. Notably, depletion of H3K36me3 prior to infection did not prevent HIV integration but resulted in a shift of integration sites from highly transcribed genes to quiescent chromatin regions and to polycomb repressed regions. We also observed that SETD2 inhibition did not apparently affect HIV RNA levels, indicating a post-transcriptional mechanism affecting HIV expression. Viral RNA splicing was modestly reduced in the presence of EPZ-719. Intriguingly, EPZ-719 exposure enhanced responsiveness of latent HIV to the HDAC inhibitor vorinostat, suggesting that H3K36me3 can contribute to a repressive chromatin state at the HIV locus. These results identify SETD2 and H3K36me3 as novel regulators of HIV integration, expression and latency.


Assuntos
Infecções por HIV , HIV-1 , Histona-Lisina N-Metiltransferase , Latência Viral , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Humanos , Latência Viral/fisiologia , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Infecções por HIV/genética , HIV-1/fisiologia , HIV-1/genética , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/metabolismo , Regulação Viral da Expressão Gênica
2.
Am J Physiol Gastrointest Liver Physiol ; 324(4): G262-G280, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36749911

RESUMO

Clostridioides difficile (C. difficile) toxins A (TcdA) and B (TcdB) cause antibiotic-associated colitis in part by disrupting epithelial barrier function. Accurate in vitro models are necessary to detect early toxicity kinetics, investigate disease etiology, and develop preclinical models for new therapies. Properties of cancer cell lines and organoids inherently limit these efforts. We developed adult stem cell-derived monolayers of differentiated human colonic epithelium (hCE) with barrier function, investigated the impact of toxins on apical/basal aspects of monolayers, and evaluated whether a leaky epithelial barrier enhances toxicity. Single-cell RNA-sequencing (scRNAseq) mapped C. difficile-relevant genes to human lineages. Transcriptomics compared hCE to Caco-2, informed timing of in vitro stem cell differentiation, and revealed transcriptional responses to TcdA. Transepithelial electrical resistance (TEER) and fluorescent permeability assays measured cytotoxicity. Contribution of TcdB toxicity was evaluated in a diclofenac-induced leaky gut model. scRNAseq demonstrated broad and variable toxin receptor expression. Absorptive colonocytes in vivo displayed increased toxin receptor, Rho GTPase, and cell junction gene expression. Advanced TcdA toxicity generally decreased cytokine/chemokine and increased tight junction and death receptor genes. Differentiated Caco-2 cells remained immature whereas hCE monolayers were similar to mature colonocytes in vivo. Basal exposure of TcdA/B caused greater toxicity and apoptosis than apical exposure. Apical exposure to toxins was enhanced by diclofenac. Apical/basal toxicities are uncoupled with more rapid onset and increased magnitude postbasal toxin exposure. Leaky junctions enhance toxicity of apical TcdB exposure. hCE monolayers represent a physiologically relevant and sensitive system to evaluate the impact of microbial toxins on gut epithelium.NEW & NOTEWORTHY Novel human colonocyte monolayer cultures, benchmarked by transcriptomics for physiological relevance, detect early cytopathic impacts of Clostridioides difficile toxins TcdA and TcdB. A fluorescent ZO-1 reporter in primary human colonocytes is used to track epithelial barrier disruption in response to TcdA. Basal TcdA/B exposure generally caused more rapid onset and cytotoxicity than apical exposure. Transcriptomics demonstrate changes in tight junction, chemokine, and cytokine receptor gene expression post-TcdA exposure. Diclofenac-induced leaky epithelium enhanced apical exposure toxicity.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/metabolismo , Enterotoxinas/toxicidade , Enterotoxinas/metabolismo , Clostridioides difficile/metabolismo , Células CACO-2 , Diclofenaco , Proteínas de Bactérias/metabolismo , Colo/metabolismo
3.
Stem Cell Reports ; 17(6): 1493-1506, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35523179

RESUMO

Two-dimensional (2D) cultures of intestinal and colonic epithelium can be generated using human intestinal stem cells (hISCs) derived from primary tissue sources. These 2D cultures are emerging as attractive and versatile alternatives to three-dimensional organoid cultures; however, transgenesis and gene-editing approaches have not been developed for hISCs grown as 2D monolayers. Using 2D cultured hISCs we show that electroporation achieves up to 80% transfection in hISCs from six anatomical regions with around 64% survival and produces 0.15% transgenesis by PiggyBac transposase and 35% gene edited indels by electroporation of Cas9-ribonucleoprotein complexes at the OLFM4 locus. We create OLFM4-emGFP knock-in hISCs, validate the reporter on engineered 2D crypt devices, and develop complete workflows for high-throughput cloning and expansion of transgenic lines in 3-4 weeks. New findings demonstrate small hISCs expressing the highest OLFM4 levels exhibit the most organoid forming potential and show utility of the 2D crypt device to evaluate hISC function.


Assuntos
Edição de Genes , Marcação de Genes , Sistemas CRISPR-Cas , Edição de Genes/métodos , Humanos , Intestino Delgado , Organoides , Células-Tronco , Transfecção
4.
Cell Mol Gastroenterol Hepatol ; 14(2): 409-434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35489715

RESUMO

BACKGROUND & AIMS: Fatty acid oxidation by absorptive enterocytes has been linked to the pathophysiology of type 2 diabetes, obesity, and dyslipidemia. Caco-2 and organoids have been used to study dietary lipid-handling processes including fatty acid oxidation, but are limited in physiological relevance or preclude simultaneous apical and basal access. Here, we developed a high-throughput planar human absorptive enterocyte monolayer system for investigating lipid handling, and then evaluated the role of fatty acid oxidation in fatty acid export, using etomoxir, C75, and the antidiabetic drug metformin. METHODS: Single-cell RNA-sequencing, transcriptomics, and lineage trajectory was performed on primary human jejunum. In vivo absorptive enterocyte maturational states informed conditions used to differentiate human intestinal stem cells (ISCs) that mimic in vivo absorptive enterocyte maturation. The system was scaled for high-throughput drug screening. Fatty acid oxidation was modulated pharmacologically and BODIPY (Thermo Fisher Scientific, Waltham, MA) (B)-labeled fatty acids were used to evaluate fatty acid handling via fluorescence and thin-layer chromatography. RESULTS: Single-cell RNA-sequencing shows increasing expression of lipid-handling genes as absorptive enterocytes mature. Culture conditions promote ISC differentiation into confluent absorptive enterocyte monolayers. Fatty acid-handling gene expression mimics in vivo maturational states. The fatty acid oxidation inhibitor etomoxir decreased apical-to-basolateral export of medium-chain B-C12 and long-chain B-C16 fatty acids, whereas the CPT1 agonist C75 and the antidiabetic drug metformin increased apical-to-basolateral export. Short-chain B-C5 was unaffected by fatty acid oxidation inhibition and diffused through absorptive enterocytes. CONCLUSIONS: Primary human ISCs in culture undergo programmed maturation. Absorptive enterocyte monolayers show in vivo maturational states and lipid-handling gene expression profiles. Absorptive enterocytes create strong epithelial barriers in 96-Transwell format. Fatty acid export is proportional to fatty acid oxidation. Metformin enhances fatty acid oxidation and increases basolateral fatty acid export, supporting an intestine-specific role.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Células CACO-2 , Diabetes Mellitus Tipo 2/metabolismo , Enterócitos/metabolismo , Ácidos Graxos/metabolismo , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , RNA
5.
Cell Mol Gastroenterol Hepatol ; 13(5): 1554-1589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176508

RESUMO

BACKGROUND & AIMS: Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon from 3 human beings. METHODS: A total of 12,590 single epithelial cells from 3 independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses focused on intrinsic cell properties and their capacity for response to extrinsic signals along the gut axis across different human beings. RESULTS: Cells were assigned to 25 epithelial lineage clusters. Multiple accepted intestinal stem cell markers do not specifically mark all human intestinal stem cells. Lysozyme expression is not unique to human Paneth cells, and Paneth cells lack expression of expected niche factors. Bestrophin 4 (BEST4)+ cells express Neuropeptide Y (NPY) and show maturational differences between the small intestine and colon. Tuft cells possess a broad ability to interact with the innate and adaptive immune systems through previously unreported receptors. Some classes of mucins, hormones, cell junctions, and nutrient absorption genes show unappreciated regional expression differences across lineages. The differential expression of receptors and drug targets across lineages show biological variation and the potential for variegated responses. CONCLUSIONS: Our study identifies novel lineage marker genes, covers regional differences, shows important differences between mouse and human gut epithelium, and reveals insight into how the epithelium responds to the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium resolves likely functional differences across anatomic regions along the gastrointestinal tract and advances our understanding of human intestinal physiology.


Assuntos
Mucosa Intestinal , Transcriptoma , Animais , Colo , Epitélio , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado , Camundongos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...