Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Neurosci ; 119(4): 508-30, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19229719

RESUMO

Neuropeptide Y (NPY) is an important neuromodulator found in central and peripheral neurons. NPY was investigated in the peripheral auditory pathway of conventional housed rats and after nontraumatic sound stimulation in order to localize the molecule and also to describe its response to sound stimulus. Rats from the stimulation experiment were housed in monitored sound-proofed rooms. Stimulated animals received sound stimuli (pure tone bursts of 8 kHz, 50 ms duration presented at a rate of 2 per second) at an intensity of 80 dB sound pressure level for 1 hr per day during 7 days. After euthanizing, rat cochleae were processed for one-color immunohistochemistry. The NPY immunoreactivity was detected in inner hair cells (IHC) and also in pillar and Deiters' cells of organ of Corti, and in the spiral ganglion putative type I (> or = 1,009 microm(3)) and type II (< or = 225 microm(3)) neurons. Outer hair cells (OHC) showed light immunoreaction product. Quantitative microdensitometry showed strong and moderate immunoreactions in IHC and spiral ganglion neurons, respectively, without differences among cochlear turns. One week of acoustic stimulation was not able to induce changes in the NPY immunoreactivity intensity in the IHC of cochlea. However, stimulated rats showed an overall increase in the number of putative type I and type II NPY immunoreactive spiral ganglion neurons with strong, moderate, and weak immunolabeling. Localization and responses of NPY to acoustic stimulus suggest an involvement of the neuropeptide in the neuromodulation of afferent transmission in the rat peripheral auditory pathway.


Assuntos
Estimulação Acústica , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Órgão Espiral/metabolismo , Análise de Variância , Animais , Densitometria , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar
2.
Hear Res ; 205(1-2): 1-6, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15953510

RESUMO

The distribution of neurotensin-containing cell bodies and fibers has been observed in the central and peripheral nervous system, including sensory ganglia, but no description has been found in the peripheral auditory system. Here, we investigated the presence of neurotensin immunoreactivity in the cochlea of the adult Wistar rat. Strong neurotensin immunoreactivity was detected in the cytoplasm of the inner hair cells (IHC) and Deiters' cells of the organ of Corti. Outer hair cells (OHC) show weak immunoreaction. Neurotensin immunoreactivity was also found in the neurons and fibers of the spiral ganglia. Quantitative microdensitometric image analysis of the neurotensin immunoreactivity showed a strong immunoreaction in the hair cells of organ of Corti and a moderate to strong labeling in the spiral ganglion neurons. A series of double immunolabeling experiments demonstrated a strong neurotensin immunoreactivity in the parvalbumin immunoreactive IHC and also in the calbindin immunoreactive Deiters' cells. Weak neurotensin immunoreactivity was seen in the calbindin positive OHC. Neurofilament and parvalbumin immunoreactive neurons and fibers in the spiral ganglia showed neurotensin immunoreactivity. Calbindin immunoreactivity was not detected in the spiral ganglion neurons, which are labeled by neurotensin immunoreactivity. The presence of neurotensin in the cochlea may be related to its modulation of neurotransmission in the peripheral auditory pathway.


Assuntos
Neurônios/química , Neurotensina/análise , Órgão Espiral/química , Animais , Células Ciliadas Auditivas/química , Células Ciliadas Auditivas/imunologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Neurônios/imunologia , Neurotensina/biossíntese , Neurotensina/imunologia , Órgão Espiral/imunologia , Ratos , Ratos Wistar , Organismos Livres de Patógenos Específicos , Gânglio Espiral da Cóclea/química , Gânglio Espiral da Cóclea/imunologia
3.
Neurotoxicol Teratol ; 26(3): 417-27, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15113603

RESUMO

Pregnant Wistar rats received a hyperproteic liquid diet containing 37.5% ethanol-derived calories during gestation. Isocaloric amount of liquid diet, with maltose-dextrin substituted for ethanol, was given to control pair-fed dams. Offsprings were allowed to survive until 24 months of age. A set of aged female offsprings of both control diet and ethanol diet groups was registered for spontaneous motor activity, by means of an infrared motion sensor activity monitor, or for apomorphine-induced rotational behavior, while another lot of male offsprings was submitted to an unilateral striatal small mechanical lesion by a needle, 6 days before rotational recordings. Prenatal ethanol did not alter spontaneous motor parameters like resting time as well as the events of small and large movements in the aged offsprings. Bilateral circling behavior was already increased 5 min after apomorphine in the unlesioned offsprings of both the control and ethanol diet groups. However, it lasted more elevated for 45- to 75-min time intervals in the gestational ethanol-exposed offsprings, while decreasing faster in the control offsprings. Apomorphine triggered a strong and sustained elevation of contraversive turns in the striatal-lesioned 24-month-old offsprings of the ethanol group, but only a small and transient elevation was seen in the offsprings of the control diet group. Astroglial and microglial reactions were seen surrounding the striatal needle track lesion. Microdensitometric image analysis demonstrated no differences in the levels of tyrosine hydroxylase immunoreactivity in the striatum of 24-month-old unlesioned and lesioned offsprings of control and alcohol diet groups. The results suggest that ethanol exposure during gestation may alter the sensitivity of dopamine receptor in aged offsprings, which is augmented by even a small striatal lesion.


Assuntos
Antígenos CD , Antígenos de Neoplasias , Antígenos de Superfície , Proteínas Aviárias , Proteínas Sanguíneas , Depressores do Sistema Nervoso Central/farmacologia , Corpo Estriado/efeitos dos fármacos , Etanol/farmacologia , Efeitos Tardios da Exposição Pré-Natal , Comportamento Estereotipado/efeitos dos fármacos , Fatores Etários , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Apomorfina/farmacologia , Basigina , Comportamento Animal , Contagem de Células/métodos , Corpo Estriado/lesões , Corpo Estriado/fisiologia , Agonistas de Dopamina/farmacologia , Feminino , Lateralidade Funcional/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica/métodos , Masculino , Glicoproteínas de Membrana/metabolismo , Atividade Motora/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , Aumento de Peso/efeitos dos fármacos
4.
Acta cir. bras ; 13(1): 8-17, jan.-mar. 1998. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-209225

RESUMO

Trauma and neurodegenerative diseases commit the nervous system. After an axotomy or nerve injury in the peripheral nervous system the regeneration of the nerve fibers and reinervation of the target are seen. In central nervous system these events are restrictive, however their occurrence are related to the state of glial reaction and the synthesis of neurotrophic factors. Basic fibroblast growth factor (bFGF) has been considered an important trophic factor for neurons and astrocytes of many central nervous system regions. In this study rats were submitted to one of following neurosurgery procedures: callosotomy, pyramidectomy or complete transection of hypoglossal nerve (XII). Sham operations were made in control animals. Seven days later animals were sacrificed and their braims processed for immunohistochemistry. Coronal sections were taken from the central nervous system and incubated with antisera against the glial fibrillary acidic protein (GFAP) or neurofilament (NF), markers for astrocyte and neuronal cell body and fibers, respectively, as well as with the antiserum against the bFGF. The degree of the labelling was quatified with computer assisted stereological methods. The analysis of the NF immunoreactivity revealed a disappearance of fibers in the white matter distal to the pyramidectomy and callosotomy, however no disapperance of NF immunoreactive neurons was found in the XII nucleus following axotomy. These changes was accompanied by a massive astrocytic reaction. The reactive astrocytes synthesized increased amounts of bFGF. These findings suggest that glial reaction synthesizing neurotrophic factors may influence the wound and repair after mechanical lesions of central nervous and subsequent neuronal trophism and plasticity which may be relevant to the regenerative process of the nervous tissue.


Assuntos
Animais , Masculino , Ratos , Sistema Nervoso Central/cirurgia , Microcirurgia , Neuroglia/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Procedimentos Neurocirúrgicos , Proteína Glial Fibrilar Ácida/fisiologia , Proteínas de Neurofilamentos/fisiologia , Sistema Nervoso Periférico/cirurgia , Tropismo , Astrócitos/fisiologia , Fator 2 de Crescimento de Fibroblastos , Regeneração Nervosa , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...