Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(21): eadl3149, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787954

RESUMO

The extent to which evolution is repeatable remains debated. Here, we study changes over time in the frequency of cryptic color-pattern morphs in 10 replicate long-term field studies of a stick insect, each spanning at least a decade (across 30 years of total data). We find predictable "up-and-down" fluctuations in stripe frequency in all populations, representing repeatable evolutionary dynamics based on standing genetic variation. A field experiment demonstrates that these fluctuations involve negative frequency-dependent natural selection (NFDS). These fluctuations rely on demographic and selective variability that pushes populations away from equilibrium, such that they can reliably move back toward it via NFDS. Last, we show that the origin of new cryptic forms is associated with multiple structural genomic variants such that which mutations arise affects evolution at larger temporal scales. Thus, evolution from existing variation is predictable and repeatable, but mutation adds complexity even for traits evolving deterministically under natural selection.


Assuntos
Evolução Biológica , Seleção Genética , Animais , Insetos/genética , Mutação , Variação Genética , Evolução Molecular , Fenótipo , Pigmentação/genética
2.
Science ; 376(6588): 30-31, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35357923

RESUMO

The rapid evolution of specific genes within species can drive ecological changes.


Assuntos
Evolução Biológica
3.
Trends Ecol Evol ; 35(11): 968-971, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32873397

RESUMO

Speciation is a fundamental process shaping biodiversity. However, existing empirical methods often cannot provide key genetic and functional details required to validate speciation theory. New gene modification technologies can verify the causal functionality of genes with astonishing accuracy, helping resolve questions about how reproductive isolation evolves during speciation.


Assuntos
Especiação Genética , Isolamento Reprodutivo , Biodiversidade , Genômica
4.
Nat Ecol Evol ; 4(12): 1673-1684, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32929238

RESUMO

Genetic interactions such as epistasis are widespread in nature and can shape evolutionary dynamics. Epistasis occurs due to nonlinearity in biological systems, which can arise via cellular processes that convert genotype to phenotype and via selective processes that connect phenotype to fitness. Few studies in nature have connected genotype to phenotype to fitness for multiple potentially interacting genetic variants. Thus, the causes of epistasis in the wild remain poorly understood. Here, we show that epistasis for fitness is an emergent and predictable property of nonlinear selective processes. We do so by measuring the genetic basis of cryptic colouration and survival in a field experiment with stick insects. We find that colouration shows a largely additive genetic basis but with some effects of epistasis that enhance differentiation between colour morphs. In terms of fitness, different combinations of loci affecting colouration confer high survival in one host-plant treatment. Specifically, nonlinear correlational selection for specific combinations of colour traits in this treatment drives the emergence of pairwise and higher-order epistasis for fitness at loci underlying colour. In turn, this results in a rugged fitness landscape for genotypes. In contrast, fitness epistasis was dampened in another treatment, where selection was weaker. Patterns of epistasis that are shaped by ecologically based selection could be common and central to understanding fitness landscapes, the dynamics of evolution and potentially other complex systems.


Assuntos
Epistasia Genética , Insetos , Animais , Cor , Genótipo , Insetos/genética , Mutação , Fenótipo
5.
Science ; 369(6502): 460-466, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32703880

RESUMO

The types of mutations affecting adaptation in the wild are only beginning to be understood. In particular, whether structural changes shape adaptation by suppressing recombination or by creating new mutations is unresolved. Here, we show that multiple linked but recombining loci underlie cryptic color morphs of Timema chumash stick insects. In a related species, these loci are found in a region of suppressed recombination, forming a supergene. However, in seven species of Timema, we found that a megabase-size "supermutation" has deleted color loci in green morphs. Moreover, we found that balancing selection likely contributes more to maintaining this mutation than does introgression. Our results show how suppressed recombination and large-scale mutation can help to package gene complexes into discrete units of diversity such as morphs, ecotypes, or species.


Assuntos
Adaptação Biológica/genética , Mutação , Neópteros/fisiologia , Animais , Evolução Biológica , Pigmentação
6.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190541, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32654646

RESUMO

Simpson's fossil-record inspired model of 'adaptive zones' proposes that evolution is dominated by small fluctuations within adaptive zones, occasionally punctuated by larger shifts between zones. This model can help explain why the process of population divergence often results in weak or moderate reproductive isolation (RI), rather than strong RI and distinct species. Applied to the speciation process, the adaptive zones hypothesis makes two inter-related predictions: (i) large shifts between zones are relatively rare, (ii) when large shifts do occur they generate stronger RI than shifts within zones. Here, we use ecological, phylogenetic and behavioural data to test these predictions in Timema stick insects. We show that host use in Timema is dominated by moderate shifts within the systematic divisions of flowering plants and conifers, with only a few extreme shifts between these divisions. However, when extreme shifts occur, they generate greater RI than do more moderate shifts. Our results support the adaptive zones model, and suggest that the net contribution of ecological shifts to diversification is dependent on both their magnitude and frequency. We discuss the generality of our findings in the light of emerging evidence from diverse taxa that the evolution of RI is not always the only factor determining the origin of species diversity. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Assuntos
Adaptação Biológica , Insetos/fisiologia , Isolamento Reprodutivo , Comportamento Sexual Animal , Animais , Cadeia Alimentar , Magnoliopsida , Traqueófitas
7.
Ecol Evol ; 10(10): 4362-4374, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489603

RESUMO

Modern metabolomic approaches that generate more comprehensive phytochemical profiles than were previously available are providing new opportunities for understanding plant-animal interactions. Specifically, we can characterize the phytochemical landscape by asking how a larger number of individual compounds affect herbivores and how compounds covary among plants. Here we use the recent colonization of alfalfa (Medicago sativa) by the Melissa blue butterfly (Lycaeides melissa) to investigate the effects of indivdiual compounds and suites of covarying phytochemicals on caterpillar performance. We find that survival, development time, and adult weight are all associated with variation in nutrition and toxicity, including biomolecules associated with plant cell function as well as putative anti-herbivore action. The plant-insect interface is complex, with clusters of covarying compounds in many cases encompassing divergent effects on different aspects of caterpillar performance. Individual compounds with the strongest associations are largely specialized metabolites, including alkaloids, phenolic glycosides, and saponins. The saponins are represented in our data by more than 25 individual compounds with beneficial and detrimental effects on L. melissa caterpillars, which highlights the value of metabolomic data as opposed to approaches that rely on total concentrations within broad defensive classes.

8.
Science ; 359(6377): 765-770, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29449486

RESUMO

Predicting evolution remains difficult. We studied the evolution of cryptic body coloration and pattern in a stick insect using 25 years of field data, experiments, and genomics. We found that evolution is more difficult to predict when it involves a balance between multiple selective factors and uncertainty in environmental conditions than when it involves feedback loops that cause consistent back-and-forth fluctuations. Specifically, changes in color-morph frequencies are modestly predictable through time (r2 = 0.14) and driven by complex selective regimes and yearly fluctuations in climate. In contrast, temporal changes in pattern-morph frequencies are highly predictable due to negative frequency-dependent selection (r2 = 0.86). For both traits, however, natural selection drives evolution around a dynamic equilibrium, providing some predictability to the process.


Assuntos
Evolução Biológica , Neópteros/genética , Seleção Genética , Animais , Clima , Meio Ambiente , Característica Quantitativa Herdável
9.
Mol Ecol ; 26(22): 6189-6205, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28786544

RESUMO

How polymorphisms are maintained within populations over long periods of time remains debated, because genetic drift and various forms of selection are expected to reduce variation. Here, we study the genetic architecture and maintenance of phenotypic morphs that confer crypsis in Timema cristinae stick insects, combining phenotypic information and genotyping-by-sequencing data from 1,360 samples across 21 populations. We find two highly divergent chromosomal variants that span megabases of sequence and are associated with colour polymorphism. We show that these variants exhibit strongly reduced effective recombination, are geographically widespread and probably diverged millions of generations ago. We detect heterokaryotype excess and signs of balancing selection acting on these variants through the species' history. A third chromosomal variant in the same genomic region likely evolved more recently from one of the two colour variants and is associated with dorsal pattern polymorphism. Our results suggest that large-scale genetic variation associated with crypsis has been maintained for long periods of time by potentially complex processes of balancing selection.


Assuntos
Evolução Biológica , Variação Genética , Insetos/genética , Seleção Genética , Adaptação Biológica/genética , Animais , California , Mapeamento Cromossômico , Análise por Conglomerados , Cor , Ecossistema , Estudos de Associação Genética , Genética Populacional , Genótipo , Fenótipo , Pigmentação
10.
Nat Ecol Evol ; 1(4): 82, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28812654

RESUMO

Speciation can involve a transition from a few genetic loci that are resistant to gene flow to genome-wide differentiation. However, only limited data exist concerning this transition and the factors promoting it. Here, we study phases of speciation using data from >100 populations of 11 species of Timema stick insects. Consistent with early phases of genic speciation, adaptive colour-pattern loci reside in localized genetic regions of accentuated differentiation between populations experiencing gene flow. Transitions to genome-wide differentiation are also observed with gene flow, in association with differentiation in polygenic chemical traits affecting mate choice. Thus, intermediate phases of speciation are associated with genome-wide differentiation and mate choice, but not growth of a few genomic islands. We also find a gap in genomic differentiation between sympatric taxa that still exchange genes and those that do not, highlighting the association between differentiation and complete reproductive isolation. Our results suggest that substantial progress towards speciation may involve the alignment of multi-faceted aspects of differentiation.

11.
Am Nat ; 183(5): 711-27, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24739202

RESUMO

The genetic architecture of adaptive traits can reflect the evolutionary history of populations and also shape divergence among populations. Despite this central role in evolution, relatively little is known regarding the genetic architecture of adaptive traits in nature, particularly for traits subject to known selection intensities. Here we quantitatively describe the genetic architecture of traits that are subject to known intensities of differential selection between host plant species in Timema cristinae stick insects. Specifically, we used phenotypic measurements of 10 traits and 211,004 single-nucleotide polymorphisms (SNPs) to conduct multilocus genome-wide association mapping. We identified a modest number of SNPs that were associated with traits and sometimes explained a large proportion of trait variation. These SNPs varied in their strength of association with traits, and both major and minor effect loci were discovered. However, we found no relationship between variation in levels of divergence among traits in nature and variation in parameters describing the genetic architecture of those same traits. Our results provide a first step toward identifying loci underlying adaptation in T. cristinae. Future studies will examine the genomic location, population differentiation, and response to selection of the trait-associated SNPs described here.


Assuntos
Estudo de Associação Genômica Ampla , Insetos/genética , Seleção Genética , Adaptação Biológica/genética , Animais , Evolução Biológica , California , Ecótipo , Genética Populacional , Fenótipo , Polimorfismo de Nucleotídeo Único
12.
BMC Evol Biol ; 12: 164, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22938057

RESUMO

BACKGROUND: Genetic divergence during speciation with gene flow is heterogeneous across the genome, with some regions exhibiting stronger differentiation than others. Exceptionally differentiated regions are often assumed to experience reduced introgression, i.e., reduced flow of alleles from one population into another because such regions are affected by divergent selection or cause reproductive isolation. In contrast, the remainder of the genome can be homogenized by high introgression. Although many studies have documented variation across the genome in genetic differentiation, there are few tests of this hypothesis that explicitly quantify introgression. Here, we provide such a test using 38,304 SNPs in populations of Timema cristinae stick insects. We quantify whether loci that are highly divergent between geographically separated ('allopatric') populations exhibit unusual patterns of introgression in admixed populations. To the extent this is true, highly divergent loci between allopatric populations contribute to reproductive isolation in admixed populations. RESULTS: As predicted, we find a substantial association between locus-specific divergence between allopatric populations and locus-specific introgression in admixed populations. However, many loci depart from this relationship, sometimes strongly so. We also report evidence for selection against foreign alleles due to local adaptation. CONCLUSIONS: Loci that are strongly differentiated between allopatric populations sometimes contribute to reproductive isolation in admixed populations. However, geographic variation in selection and local adaptation, in aspects of genetic architecture (such as organization of genes, recombination rate variation, number and effect size of variants contributing to adaptation, etc.), and in stochastic evolutionary processes such as drift can cause strong differentiation of loci that do not always contribute to reproductive isolation. The results have implications for the theory of 'genomic islands of speciation'.


Assuntos
Loci Gênicos , Genética Populacional , Insetos/genética , Isolamento Reprodutivo , Adaptação Biológica/genética , Animais , Teorema de Bayes , Fluxo Gênico , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Seleção Genética
13.
Proc Biol Sci ; 279(1749): 5058-65, 2012 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22696527

RESUMO

Diverse geographical modes and mechanisms of speciation are known, and individual speciation genes have now been identified. Despite this progress, genome-wide outcomes of different evolutionary processes during speciation are less understood. Here, we integrate ecological and spatial information, mating trials, transplantation data and analysis of 86 130 single nucleotide polymorphisms (SNPs) in eight populations (28 pairwise comparisons) of Timema cristinae stick insects to test the effects of different factors on genomic divergence in a system undergoing ecological speciation. We find patterns consistent with effects of numerous factors, including geographical distance, gene flow, divergence in host plant use and climate, and selection against maladaptive hybridization (i.e. reinforcement). For example, the number of highly differentiated 'outlier loci', allele-frequency clines and the overall distribution of genomic differentiation were recognizably affected by these factors. Although host use has strong effects on phenotypic divergence and reproductive isolation, its effects on genomic divergence were subtler and other factors had pronounced effects. The results demonstrate how genomic data can provide new insights into speciation and how genomic divergence can be complex, yet predictable. Future work could adopt experimental, mapping and functional approaches to directly test which genetic regions are affected by selection and determine their physical location in the genome.


Assuntos
Especiação Genética , Insetos/genética , Polimorfismo de Nucleotídeo Único , Adaptação Biológica , Animais , Teorema de Bayes , California , Meio Ambiente , Evolução Molecular , Genoma , Estudo de Associação Genômica Ampla , Insetos/classificação , Insetos/fisiologia , Preferência de Acasalamento Animal , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...