Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 119: 878-897, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710338

RESUMO

Metabolites and compounds derived from gut-associated bacteria can modulate numerous physiological processes in the host, including immunity and behavior. Using a model of oral bacterial infection, we previously demonstrated that gut-derived peptidoglycan (PGN), an essential constituent of the bacterial cell envelope, influences female fruit fly egg-laying behavior by activating the NF-κB cascade in a subset of brain neurons. These findings underscore PGN as a potential mediator of communication between gut bacteria and the brain in Drosophila, prompting further investigation into its impact on all brain cells. Through high-resolution mass spectrometry, we now show that PGN fragments produced by gut bacteria can rapidly reach the central nervous system. In Addition, by employing a combination of whole-genome transcriptome analyses, comprehensive genetic assays, and reporter gene systems, we reveal that gut bacterial infection triggers a PGN dose-dependent NF-κB immune response in perineurial glia, forming the continuous outer cell layer of the blood-brain barrier. Furthermore, we demonstrate that persistent PGN-dependent NF-κB activation in perineurial glial cells correlates with a reduction in lifespan and early neurological decline. Overall, our findings establish gut-derived PGN as a critical mediator of the gut-immune-brain axis in Drosophila.


Assuntos
Eixo Encéfalo-Intestino , Encéfalo , Microbioma Gastrointestinal , NF-kappa B , Peptidoglicano , Animais , Peptidoglicano/metabolismo , NF-kappa B/metabolismo , Encéfalo/metabolismo , Encéfalo/imunologia , Microbioma Gastrointestinal/fisiologia , Eixo Encéfalo-Intestino/fisiologia , Feminino , Drosophila , Neuroglia/metabolismo , Neuroglia/imunologia , Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/imunologia , Proteínas de Drosophila/metabolismo
2.
Cancer Discov ; 12(10): 2280-2307, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35929803

RESUMO

Biomarkers guiding the neoadjuvant use of immune-checkpoint blockers (ICB) are needed for patients with localized muscle-invasive bladder cancers (MIBC). Profiling tumor and blood samples, we found that follicular helper CD4+ T cells (TFH) are among the best therapeutic targets of pembrolizumab correlating with progression-free survival. TFH were associated with tumoral CD8 and PD-L1 expression at baseline and the induction of tertiary lymphoid structures after pembrolizumab. Blood central memory TFH accumulated in tumors where they produce CXCL13, a chemokine found in the plasma of responders only. IgG4+CD38+ TFH residing in bladder tissues correlated with clinical benefit. Finally, TFH and IgG directed against urothelium-invasive Escherichia coli dictated clinical responses to pembrolizumab in three independent cohorts. The links between tumor infection and success of ICB immunomodulation should be prospectively assessed at a larger scale. SIGNIFICANCE: In patients with bladder cancer treated with neoadjuvant pembrolizumab, E. coli-specific CXCL13 producing TFH and IgG constitute biomarkers that predict clinical benefit. Beyond its role as a biomarker, such immune responses against E. coli might be harnessed for future therapeutic strategies. This article is highlighted in the In This Issue feature, p. 2221.


Assuntos
Neoplasias da Bexiga Urinária , Antígeno B7-H1 , Quimiocina CXCL13 , Escherichia coli , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoglobulina G , Músculos , Terapia Neoadjuvante , Receptor de Morte Celular Programada 1 , Linfócitos T Auxiliares-Indutores , Resultado do Tratamento , Neoplasias da Bexiga Urinária/tratamento farmacológico
3.
Elife ; 102021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34579805

RESUMO

Many software solutions are available for proteomics and glycomics studies, but none are ideal for the structural analysis of peptidoglycan (PG), the essential and major component of bacterial cell envelopes. It icomprises glycan chains and peptide stems, both containing unusual amino acids and sugars. This has forced the field to rely on manual analysis approaches, which are time-consuming, labour-intensive, and prone to error. The lack of automated tools has hampered the ability to perform high-throughput analyses and prevented the adoption of a standard methodology. Here, we describe a novel tool called PGFinder for the analysis of PG structure and demonstrate that it represents a powerful tool to quantify PG fragments and discover novel structural features. Our analysis workflow, which relies on open-access tools, is a breakthrough towards a consistent and reproducible analysis of bacterial PGs. It represents a significant advance towards peptidoglycomics as a full-fledged discipline.


Assuntos
Bactérias/química , Peptidoglicano/química , Configuração de Carboidratos , Conjuntos de Dados como Assunto , Glicômica , Espectrometria de Massas/métodos , Peptidoglicano/biossíntese , Reprodutibilidade dos Testes , Software
4.
mSphere ; 6(1)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536321

RESUMO

Peptidoglycan (PG) is a major component of the bacterial cell wall, forming a mesh-like structure enwrapping the bacteria that is essential for maintaining structural integrity and providing support for anchoring other components of the cell envelope. PG biogenesis is highly dynamic and requires multiple enzymes, including several hydrolases that cleave glycosidic or amide bonds in the PG. This work describes the structural and functional characterization of an NlpC/P60-containing peptidase from Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes high mortality of warm-water marine fish with great impact for the aquaculture industry. PnpA ( PhotobacteriumNlpC-like protein A) has a four-domain structure with a hydrophobic and narrow access to the catalytic center and specificity for the γ-d-glutamyl-meso-diaminopimelic acid bond. However, PnpA does not cleave the PG of Phdp or PG of several Gram-negative and Gram-positive bacterial species. Interestingly, it is secreted by the Phdp type II secretion system and degrades the PG of Vibrio anguillarum and Vibrio vulnificus This suggests that PnpA is used by Phdp to gain an advantage over bacteria that compete for the same resources or to obtain nutrients in nutrient-scarce environments. Comparison of the muropeptide composition of PG susceptible and resistant to the catalytic activity of PnpA showed that the global content of muropeptides is similar, suggesting that susceptibility to PnpA is determined by the three-dimensional organization of the muropeptides in the PG.IMPORTANCE Peptidoglycan (PG) is a major component of the bacterial cell wall formed by long chains of two alternating sugars interconnected by short peptides, generating a mesh-like structure that enwraps the bacterial cell. Although PG provides structural integrity and support for anchoring other components of the cell envelope, it is constantly being remodeled through the action of specific enzymes that cleave or join its components. Here, it is shown that Photobacterium damselae subsp. piscicida, a bacterium that causes high mortality in warm-water marine fish, produces PnpA, an enzyme that is secreted into the environment and is able to cleave the PG of potentially competing bacteria, either to gain a competitive advantage and/or to obtain nutrients. The specificity of PnpA for the PG of some bacteria and its inability to cleave others may be explained by differences in the structure of the PG mesh and not by different muropeptide composition.


Assuntos
Bactérias/metabolismo , Endopeptidases/metabolismo , Peptidoglicano/metabolismo , Photobacterium/enzimologia , Photobacterium/metabolismo , Animais , Parede Celular/química , Parede Celular/metabolismo , Endopeptidases/análise , Endopeptidases/química , Endopeptidases/genética , Peixes/microbiologia , Photobacterium/genética
5.
Cell Death Differ ; 28(5): 1532-1547, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33262469

RESUMO

Ileal epithelial cell apoptosis and the local microbiota modulate the effects of oxaliplatin against proximal colon cancer by modulating tumor immunosurveillance. Here, we identified an ileal immune profile associated with the prognosis of colon cancer and responses to chemotherapy. The whole immune ileal transcriptome was upregulated in poor-prognosis patients with proximal colon cancer, while the colonic immunity of healthy and neoplastic areas was downregulated (except for the Th17 fingerprint) in such patients. Similar observations were made across experimental models of implanted and spontaneous murine colon cancer, showing a relationship between carcinogenesis and ileal inflammation. Conversely, oxaliplatin-based chemotherapy could restore a favorable, attenuated ileal immune fingerprint in responders. These results suggest that chemotherapy inversely shapes the immune profile of the ileum-tumor axis, influencing clinical outcome.


Assuntos
Neoplasias do Colo/fisiopatologia , Doenças do Íleo/complicações , Íleo/patologia , Animais , Humanos , Camundongos , Prognóstico
6.
Nat Med ; 26(6): 919-931, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451498

RESUMO

The prognosis of colon cancer (CC) is dictated by tumor-infiltrating lymphocytes, including follicular helper T (TFH) cells and the efficacy of chemotherapy-induced immune responses. It remains unclear whether gut microbes contribute to the elicitation of TFH cell-driven responses. Here, we show that the ileal microbiota dictates tolerogenic versus immunogenic cell death of ileal intestinal epithelial cells (IECs) and the accumulation of TFH cells in patients with CC and mice. Suppression of IEC apoptosis led to compromised chemotherapy-induced immunosurveillance against CC in mice. Protective immune responses against CC were associated with residence of Bacteroides fragilis and Erysipelotrichaceae in the ileum. In the presence of these commensals, apoptotic ileal IECs elicited PD-1+ TFH cells in an interleukin-1R1- and interleukin-12-dependent manner. The ileal microbiome governed the efficacy of chemotherapy and PD-1 blockade in CC independently of microsatellite instability. These findings demonstrate that immunogenic ileal apoptosis contributes to the prognosis of chemotherapy-treated CC.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Microbioma Gastrointestinal/imunologia , Íleo/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Oxaliplatina/farmacologia , Adenocarcinoma/imunologia , Adenocarcinoma/microbiologia , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/uso terapêutico , Apoptose/imunologia , Bacteroides fragilis , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Firmicutes , Microbioma Gastrointestinal/fisiologia , Humanos , Íleo/imunologia , Íleo/microbiologia , Íleo/patologia , Morte Celular Imunogênica/efeitos dos fármacos , Morte Celular Imunogênica/imunologia , Vigilância Imunológica/efeitos dos fármacos , Vigilância Imunológica/imunologia , Interleucina-12/imunologia , Mucosa Intestinal , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Oxaliplatina/uso terapêutico , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores Tipo I de Interleucina-1/imunologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia
7.
Elife ; 92020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022687

RESUMO

Lytic transglycosylases (LT) are enzymes involved in peptidoglycan (PG) remodeling. However, their contribution to cell-wall-modifying complexes and their potential as antimicrobial drug targets remains unclear. Here, we determined a high-resolution structure of the LT, an outer membrane lipoprotein from Neisseria species with a disordered active site helix (alpha helix 30). We show that deletion of the conserved alpha-helix 30 interferes with the integrity of the cell wall, disrupts cell division, cell separation, and impairs the fitness of the human pathogen Neisseria meningitidis during infection. Additionally, deletion of alpha-helix 30 results in hyperacetylated PG, suggesting this LtgA variant affects the function of the PG de-O-acetylase (Ape 1). Our study revealed that Ape 1 requires LtgA for optimal function, demonstrating that LTs can modulate the activity of their protein-binding partner. We show that targeting specific domains in LTs can be lethal, which opens the possibility that LTs are useful drug-targets.


Bacteria are surrounded by a tough yet flexible wall that protects the cell and serves as an anchor for several of the cell's structures. This cell wall contains a large mesh-like molecule called peptidoglycan made of many repeated building blocks. When a bacterial cell divides in two, it needs to make more of this material. Making peptidoglycan involves two different sets of enzymes working together: "polymerases" are the enzymes that link the individual building blocks to peptidoglycan, one after the other; while "lytic transglycosylases" are enzymes that modify the peptidoglycan to create space for the addition of new building blocks and for assemblies of proteins that must span the cell wall. Lytic transglycosylases are known to assemble with other proteins and enzymes to form the cell's peptidoglycan-modifying machinery, but it was not clear exactly what purpose they serve within these "enzyme complexes". It was also unclear whether these enzymes would be good targets for new antibiotics. To help answer these questions, Williams et al. looked at a lytic transglycoslyase called LtgA. This enzyme is originally from Neisseria meningitidis, a bacterium that can cause meningitis and life-threatening sepsis in humans. Williams et al. discovered that part of the enzyme's active site ­ the region of an enzyme where the chemical reaction takes ­ can switch from an ordered helix to a disordered, flexible loop. Bacteria were then genetically engineered to make a version of the enzyme that lacked this helix. These bacteria had weaker cell walls and were deformed; they were also less able to grow and divide, both in the laboratory and in a mouse model of infection. Further analysis showed that the deletion of the helix from the enzyme resulted in the peptidoglycan being modified much more than normal, which could likely explain their reduced virulence. Williams et al. also found that deleting the helix from LtgA interfered with the activity of a protein that interacts with this enzyme, called Ape1, which also contributed to the fragility of the cell wall. This shows that lytic transglycosylases assembled into enzyme complexes can alter the activities of other proteins in the complex. Together these findings show that researchers could target one enzyme in a complex in bacteria, and disrupt the activity of other proteins in that complex. This highlights the possibility of considering enzyme complexes as useful targets for new drugs, which is important considering the current problem of antibiotic resistance.


Assuntos
Parede Celular/metabolismo , Glicosiltransferases/metabolismo , Neisseria meningitidis/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Parede Celular/enzimologia , Glicosiltransferases/química , Morfogênese , Neisseria meningitidis/enzimologia , Peptidoglicano/metabolismo , Ligação Proteica
8.
PLoS One ; 12(9): e0184976, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28931041

RESUMO

Respiratory tract infections such as flu cause severe morbidity and mortality and are among the leading causes of death in children and adults worldwide. Commensal microbiota is critical for orchestrating tissue homeostasis and immunity in the intestine. Probiotics represent an interesting source of immune modulators and several clinical studies have addressed the potential beneficial effects of probiotics against respiratory infections. Therefore, we have investigated the mechanisms of protection conferred by L. paracasei CNCM I-1518 strain in a mouse model of influenza infection. Notably, local myeloid cells accumulation is generated in the lungs after seven days feeding with L. paracasei prior to viral infection. L. paracasei-fed mice showed reduced susceptibility to the influenza infection, associated with less accumulation of inflammatory cells in the lungs, faster viral clearance and general health improvement. Interestingly, Allobaculum was significantly increased in L. paracasei-fed mice 7 days after influenza infection, even if the gut microbiota composition was not altered overall. L. paracasei-purified peptidoglycan partially recapitulated the protective phenotype observed with the entire bacteria. Collectively, our results demonstrate that oral consumption of L. paracasei CNCM I-1518 modulates lung immunity was associated with an improved control of influenza infection. These results further extend the beneficial role for certain lactobacilli to alleviate the burden of respiratory tract infections.


Assuntos
Imunidade Celular/imunologia , Lacticaseibacillus paracasei/fisiologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Probióticos/administração & dosagem , Infecções Respiratórias/imunologia , Animais , Contagem de Colônia Microbiana , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/microbiologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções Respiratórias/microbiologia , Infecções Respiratórias/prevenção & controle
9.
Oncoimmunology ; 6(1): e1132137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197360

RESUMO

Although anticancer therapy with immune checkpoint blockers has seen unprecedented success, it fails to control neoplasia in most patients and often causes immune-related adverse events (irAEs). Our recent research shows the immunostimulatory and antitumor effects of CTLA-4 blockade depend on distinct Bacteroides species of the gut microbiota, signifying novel approaches to improve such immunotherapies.

10.
Cell Microbiol ; 16(7): 1014-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24779390

RESUMO

Peptidoglycans (PGN) are a constituent of the bacterial cell wall, and are shed as bacteria divide. The presence of PGN is therefore a marker of bacterial activity that has been exploited by both plants and animals to induce defence mechanisms. Pattern recognition receptors that recognize PGN are extremely well conserved throughout evolution and shown to play important and diverse role in the development, homeostasis and activation of the immune system. In addition, PGN can be detected beyond mucosal surfaces, and their receptor can be expressed in tissues and cells that are far from the niches where bacteria reside. Thus, PGN affects not only the host's immunity, but also more generally the host's physiology. In this review, we discuss the biochemistry and biology of PGN, and their intriguing effects on the development of the immune system and the host physiology.


Assuntos
Sistema Imunitário/fisiologia , Microbiota/imunologia , Peptidoglicano/imunologia , Animais , Trato Gastrointestinal/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Sistema Imunitário/microbiologia , Peptidoglicano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...