Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(12): 15498-15508, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36940316

RESUMO

A simple and effective preparation of solution-processed chalcogenide thermoelectric materials is described. First, PbTe, PbSe, and SnSe were prepared by gram-scale colloidal synthesis relying on the reaction between metal acetates and diphenyl dichalcogenides in hexadecylamine solvent. The resultant phase-pure chalcogenides consist of highly crystalline and defect-free particles with distinct cubic-, tetrapod-, and rod-like morphologies. The powdered PbTe, PbSe, and SnSe products were subjected to densification by spark plasma sintering (SPS), affording dense pellets of the respective chalcogenides. Scanning electron microscopy shows that the SPS-derived pellets exhibit fine nano-/micro-structures dictated by the original morphology of the key constituting particles, while the powder X-ray diffraction and electron microscopy analyses confirm that the SPS-derived pellets are phase-pure materials, preserving the structure of the colloidal synthesis products. The resultant solution-processed PbTe, PbSe, and SnSe exhibit low thermal conductivity, which might be due to the enhanced phonon scattering developed over fine microstructures. For undoped n-type PbTe and p-type SnSe samples, an expected moderate thermoelectric performance is achieved. In contrast, an outstanding figure-of-merit of 0.73 at 673 K was achieved for undoped n-type PbSe outperforming, the majority of the optimized PbSe-based thermoelectric materials. Overall, our findings facilitate the design of efficient solution-processed chalcogenide thermoelectrics.

2.
Materials (Basel) ; 16(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36769905

RESUMO

As the search continues for novel, cheaper, more sustainable, and environmentally friendly thermoelectric materials in order to expand the range of applications of thermoelectric devices, the tetrahedrite mineral (Cu12Sb4S13) stands out as a potential candidate due to its high abundance, low toxicity, and good thermoelectric performance. Unfortunately, as most current thermoelectric materials achieve zTs above 1.0, ternary tetrahedrite is not a suitable alternative. Still, improvement of its thermoelectric performance has been achieved to zTs ≈ 1 via isovalent doping and composition tuning, but most studies were limited to a single doping element. This project explores the effects of simultaneous doping with nickel and selenium in the thermoelectric properties of tetrahedrite. Simulated properties for different stoichiometric contents of these dopants, as well as the measured thermoelectric properties of the correspondent materials, are reported. One of the samples, Cu11.5Ni0.5Sb4S12.5Se0.5, stands out with a high power factor = 1279.99 µW/m·K2 at 300 K. After estimating the thermal conductivity, a zT = 0.325 at 300 K was obtained for this composition, which is the highest for tetrahedrites for this temperature. However, analysis of the weighted mobility shows the presence of detrimental factors, such as grain boundaries, disorder, or ionized impurity scattering, pointing to the possibility of further improvements.

3.
Micromachines (Basel) ; 13(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36363936

RESUMO

With global warming and rising energy demands, it is important now than ever to transit to renewable energy systems. Thermoelectric (TE) devices can present a feasible alternative to generate clean energy from waste heat. However, to become attractive for large-scale applications, such devices must be cheap, efficient, and based on ecofriendly materials. In this study, the potential of novel silicide-tetrahedrite modules for energy generation was examined. Computer simulations based on the finite element method (FEM) and implicit finite difference method (IFDM) were performed. The developed computational models were validated against data measured on a customized system working with commercial TE devices. The models were capable of predicting the TEGs' behavior with low deviations (≤10%). IFDM was used to study the power produced by the silicide-tetrahedrite TEGs for different ΔT between the sinks, whereas FEM was used to study the temperature distributions across the testing system in detail. To complement these results, the influence of the electrical and thermal contact resistances was evaluated. High thermal resistances were found to affect the devices ΔT up to ~15%, whereas high electrical contact resistances reduced the power output of the silicide-tetrahedrite TEGs by more than ~85%.

4.
Inorg Chem ; 54(19): 9646-55, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26371628

RESUMO

A single crystal of U3Fe2Ge7 was synthesized by the tin-flux method, and its structural and electronic properties were studied. The compound crystallizes in the orthorhombic crystal structure of La3Co2Sn7 type with two Wyckoff sites for the U atoms. U3Fe2Ge7 displays a ferromagnetic order below TC = 62 K. Magnetization measurements in static (up to 14 T) and pulsed (up to 60 T) magnetic fields revealed a strong two-ion uniaxial magnetic anisotropy. The easy magnetization direction is along the c axis and the spontaneous magnetic moment is 3.3 µB per formula unit at 2 K. The moment per Fe atom is 0.2 µB, as follows from Mössbauer spectroscopy. The magnetic moments are oriented perpendicular to the shortest inter-uranium distances that occur within the zigzag chains in the ab plane, contrary to other U-based isostructural compounds. The magnetization along the a axis reveals a first-order magnetization process that allows for a quantitative description of the magnetic anisotropy in spite of its enormous energetic strength. The strong anisotropy is reflected in the specific heat and electrical resistivity that are affected by a gap in magnon spectrum.

5.
Inorg Chem ; 52(19): 10968-75, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24047411

RESUMO

Laser ionization of AnC4 alloys (An = Th, U) yielded gas-phase molecular thorium and uranium carbide cluster cations of composition An(m)C(n)(+), with m = 1, n = 2-14, and m = 2, n = 3-18, as detected by Fourier transform ion-cyclotron-resonance mass spectrometry. In the case of thorium, Th(m)C(n)(+) cluster ions with m = 3-13 and n = 5-30 were also produced, with an intriguing high intensity of Th13C(n)(+) cations. The AnC13(+) ions also exhibited an unexpectedly high abundance, in contrast to the gradual decrease in the intensity of other AnC(n)(+) ions with increasing values of n. High abundances of AnC2(+) and AnC4(+) ions are consistent with enhanced stability due to strong metal-C2 bonds. Among the most abundant bimetallic ions was Th2C3(+) for thorium; in contrast, U2C4(+) was the most intense bimetallic for uranium, with essentially no U2C3(+) appearing. Density functional theory computations were performed to illuminate this distinction between thorium and uranium. The computational results revealed structural and energetic disparities for the An2C3(+) and An2C4(+) cluster ions, which elucidate the observed differing abundances of the bimetallic carbide ions. Particularly noteworthy is that the Th atoms are essentially equivalent in Th2C3(+), whereas there is a large asymmetry between the U atoms in U2C3(+).

6.
Microsc Microanal ; 19(5): 1211-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23764134

RESUMO

Nd:11Fe:Ti alloys prepared by arc melting followed by splat quenching and annealing have been investigated by electron microscopy. The as-cast microstructure evidenced an α-Fe(Ti) --> NdFe11Ti --> Nd2(Fe,Ti)17 solidification sequence compatible with a cascade of peritectic reactions. The Nd2(Fe,Ti)17 phase was not detected in the microstructure of the splat-quenched materials, but after annealing the ternary compound grains consisted of a mixture of ThMn12-type and Th2Zn17-type structures exhibiting a consistent (020)1:12//(003)2:17 and [100]1:12//[110]2:17, orientation relation, with the invariant plane sitting at (022)1:12//(333)2:17. A series of 3D microdiffraction experiments carried out on grains presenting a random distribution of planar defects has been used to map the reciprocal space of the intergrown phases.

7.
J Chem Phys ; 134(24): 244313, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21721636

RESUMO

Laser evaporation of carbon rich uranium/carbon alloy targets into condensing argon or neon matrix samples gives weak infrared absorptions that increase on annealing, which can be assigned to new uranium carbon bearing species. New bands at 827.6 cm(-1) in solid argon or 871.7 cm(-1) in neon become doublets with mixed carbon 12 and 13 isotopes and exhibit the 1.0381 carbon isotopic frequency ratio for the UC diatomic molecule. Another new band at 891.4 cm(-1) in argon gives a three-band mixed isotopic spectrum with the 1.0366 carbon isotopic frequency ratio, which is characteristic of the anti-symmetric stretching vibration of a linear CUC molecule. No evidence was found for the lower energy cyclic U(CC) isomer. Other bands at 798.6 and 544.0 cm(-1) are identified as UCH, which has a uranium-carbon triple bond similar to that in UC. Evidence is found for bicyclic U(CC)(2) and tricyclic U(CC)(3). This work shows that U and C atoms react spontaneously to form the uranium carbide U≡C and C≡U≡C molecules with uranium-carbon triple bonds.

8.
J Am Chem Soc ; 132(24): 8484-8, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20504028

RESUMO

Laser evaporation of carbon-rich uranium/carbon alloys followed by atom reactions in a solid argon matrix and trapping at 8 K gives weak infrared absorptions for CUO at 852 and 804 cm(-1). A new band at 827 cm(-1) becomes a doublet with mixed carbon 12 and 13 isotopes and exhibits the 1.0381 isotopic frequency ratio, which is appropriate for the UC diatomic molecule, and another new band at 891 cm(-1) gives a three-band mixed isotopic spectrum with the 1.0366 isotopic frequency ratio, which is characteristic of the linear CUC molecule. CASPT2 calculations with dynamical correlation find the C[triple bond]U[triple bond]C ground state as linear 3Sigma(u)+ with 1.840 A bond length and molecular orbital occupancies for an effective bond order of 2.83. Similar calculations with spin-orbit coupling show that the U[triple bond]C diatomic molecule has a quintet (Lambda = 5, Omega = 3) ground state, a similar 1.855 A bond length, and a fully developed triple bond of 2.82 effective bond order.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...