Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 7(12): 6629-36, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25751495

RESUMO

The role of the transition metal nature and Al2O3 coating on the surface reactivity of LiCoO2 and LiNi(1/3)Mn(1/3)Co(1/3)O2 (NMC) materials were studied by coupling chemisorption of gaseous probes molecules and X-ray photoelectron (XPS) spectroscopy. The XPS analyses have put in evidence the low reactivity of the LiMO2 materials toward basic gaseous probe (NH3). The reactivity toward SO2 gaseous probe is much larger (roughly more than 10 times) and strongly influenced by the nature of metal. Only one adsorption mode (redox process producing adsorbed sulfate species) was observed at the LiCoO2 surface, while NMC materials exhibit sulfate and sulfite species at the surface. On the basis of XPS analysis of bare materials and previous theoretical work, we propose that the acid-base adsorption mode involving the Ni(2+) cation is responsible for the sulfite species on the NMC surface. After Al2O3 coating, the surface reactivity was clearly decreasing for both LiCoO2 and NMC materials. In addition, for LiCoO2, the coating modifies the surface reactivity with the identification of both sulfate and sulfite species. This result is in line with a change in the adsorption mode from redox toward acid-base after Al/Co substitution. In the case of NMC materials, the coating induced a decrease of the sulfite species content at the surface. This phenomenon can be related to the cation mixing effect in the NMC.

2.
Nat Mater ; 14(2): 230-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25437258

RESUMO

Although Li-rich layered oxides (Li1+xNiyCozMn1-x-y-zO2 > 250 mAh g(-1)) are attractive electrode materials providing energy densities more than 15% higher than today's commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1-yTiyO3 phases with capacities of ~240 mAh g(-1) exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the charge-discharge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1-ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.

3.
Chem Commun (Camb) ; 49(97): 11376-8, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24165856

RESUMO

Layered Li4NiTeO6 was shown to reversibly release/uptake ∼2 lithium ions per formula unit with fair capacity retention upon long cycling. The Li electrochemical reactivity mechanism differs from that of Li2MO3 and is rooted in the Ni(4+)/Ni(2+) redox couple, that takes place at a higher potential than conventional LiNi1-xMnxO2 compounds. We explain this in terms of inductive effect due to Te(6+) ions (or the TeO6(6-) moiety).

4.
Nat Mater ; 12(9): 827-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852398

RESUMO

Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion-deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li(1+x)Ni(y)Co(z)Mn(1-x-y-z)O2) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li2Ru(1-y)Sn(y)O3 materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g(-1). Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (M(n+)→M((n+1)+)) and anionic (O(2-)→O2(2-)) reversible redox processes, owing to the d-sp hybridization associated with a reductive coupling mechanism. Because Li2MO3 is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials.


Assuntos
Ânions/química , Eletrodos , Óxidos/química , Técnicas Eletroquímicas , Espectroscopia de Ressonância de Spin Eletrônica , Desenho de Equipamento , Lítio/química , Oxirredução , Espectroscopia de Mossbauer , Difração de Raios X
5.
Phys Chem Chem Phys ; 11(18): 3554-65, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19421561

RESUMO

This paper presents the preparation and characterization of hybrid hydrotalcite-type layered double hydroxides (Zn1-xAlx(OH)2HBSx.nH2O, with x=0.33) where HBS is the 4-phenol sulfonate, with a detailed analysis of the grafting process of this organic entity onto the host lattice. As a set of the usual techniques (XRD, TG-DT/MS, FTIR and 27Al MAS NMR) was used to characterize the hybrid materials, this work focuses on a joint study by X-ray photoelectron spectroscopy and some quantum-calculation modeling in order to highlight the nature of the interactions between the organic and the mineral sub-systems. For the as-prepared hybrid material, the main results lead to a quasi-vertical orientation of the organic molecules within the mineral sheets via H-bond stabilization. By heating the hybrid material up to 200 degrees C, the structure shrinks with the condensation of the organics; the different theoretical modeling done gives an energy-stable situation when a direct attachment of the HBS sulfonate group sets up with the mineral layers, in agreement with the recorded XPS experimental data.

6.
J Chem Phys ; 128(1): 014708, 2008 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18190213

RESUMO

We have performed ab initio linear combination of atomic orbitals-density functional theory calculations on biperiodic supercells to model the electronic and geometrical involvements of Ti intercalated atom in either octahedral or tetrahedral sites of the (001) TiS2 surfaces. For each type of defect, both the relaxed atomic structure and the electronic properties of the defect states were carefully analyzed. For the titanium atom in the van der Waals gap, the partial filling of the conduction band is in agreement with the metallic behavior reported by experimental studies and the last filled states in the bottom of the conduction band--mainly developed on titanium 3d orbitals--permit us to explain the dark defects observed on the scanning tunneling microscopy image of the (001) TiS2 surfaces. On the other hand, the intercalated titanium atom in the tetrahedral site which is just below the top sulfur atom plane governs the electronic density detected by the tip. It permits us to explain the triangular defect with a clear maximum of intensity in its center and dark sides.

7.
J Chem Phys ; 126(7): 074703, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17328623

RESUMO

Various defects--either bright or dark triangular defects--are observed on the (001) titanium disulfide surface by ultrahigh vacuum scanning tunneling microscopy. The experimental interpretations of the images available in the literature suggest that a fraction of Ti atoms could be displaced from the octahedral site they occupied to vacant sites of the crystal structure, leading to more or less correlated defects. In this paper, the authors have performed ab initio periodic linear combination of atomic orbitals-generalized gradient approximation (LCAO-GGA) calculations on (5x5) and (4x4) biperiodic supercells to model the electronic and geometrical involvements of Ti vacancy. The relaxed atomic structures of each system and the wave-function character of the defect states are carefully analyzed before the theoretical scanning tunneling microscopy images are generated within the Tersoff-Hamann approximation. The relaxed structure of the Ti vacancy shows an inward movement of the neighboring sulfur atoms at the surface. However, the occupied electronic states of the vacancy at the Fermi level are mainly developed on the atomic orbitals of the first sulfur neighbors at the surface, leading to bright triangular zones on the simulated image.

8.
J Phys Chem B ; 110(26): 12986-92, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16805604

RESUMO

X-ray photoelectron valence spectra of lithium salts LiBF4, LiPF6, LiTFSI, and LiBETI have been recorded and analyzed by means of density functional theory (DFT) calculations, with good agreement between experimental and calculated spectra. The results of this study are used to characterize electrode/electrolyte interfaces of graphite negative electrodes in Li-ion batteries using organic carbonate electrolytes containing LiTFSI or LiBETI salts. By a combined X-ray photoelectron spectroscopy (XPS) core peaks/valence analysis, we identify the main constituents of the interface. Differences in the surface layers' composition can be evidenced, depending on whether LiTFSI or LiBETI is used as the lithium salt.

9.
J Phys Chem B ; 109(33): 15868-75, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16853016

RESUMO

Lithium alkyl carbonates ROCO2Li result from the reductive decomposition of dialkyl carbonates, which are the organic solvents used in the electrolytes of common lithium-ion batteries. They play a crucial role in the formation of surface layers at the electrode/electrolyte interfaces. In this work, we report on the X-ray photoelectron spectroscopy (XPS) characterization of synthesized lithium methyl and ethyl carbonates. Using Hartree-Fock ab initio calculations, we interpret and simulate the valence spectra of both samples, as well as several other Li alkyl carbonates involved in Li-ion batteries. We show that Li alkyl carbonates can be identified at the electrode's surface by a combined analysis of XPS core peaks and valence spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...