Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet Parasitol ; 276: 108962, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31704559

RESUMO

Sarcocystis neurona is the major cause of the equine protozoal myeloencephalitis (EPM) in the Americas and has opossums of the genus Didelphis as definitive hosts. Most isolates of Sarcocystis sp. shed by opossums in Brazil differ genetically from the known species of Sarcocystis. These Brazilian isolates behave similarly as Sarcocystis falcatula, which causes sarcocystosis in birds, and for this reason, have been classified as Sarcocystis falcatula-like. Genes coding for the immunodominant surface antigens SAG2, SAG3 and SAG4 of S. falcatula-like are similar to those from S. neurona. It is unknown the Sarcocystis species that causes EPM in Brazil, as S. neurona has never been genetically confirmed in Brazilian horses. All cases associated with EPM in Brazil were diagnosed by immunological tests, which are not specific for S. neurona infection. It is possible that S. falcatula-like may infect horses in Brazil. The aims of the current study were to test the susceptibility of gerbils (Meriones unguiculatus) to experimental infections with S. neurona and S. falcatula-like, and to investigate potential serologic cross-reactivity to these parasites by immunofluorescent antibody test (IFAT) and Western blot (WB). A total of 27 gerbils, distributed in five experimental groups (G1-G5), were employed in this work (G1: 4 negative controls; G2: 6 infected with S. neurona merozoites, G3: 6 infected with S. falcatula-like merozoites; G4 and G5 (5 and 6, respectively, infected with different doses of sporocysts). None of the 17 animals that seroconverted for the parasites in IFAT presented any visualized organism or Sarcocystis DNA in the examined tissues. No serologic cross-reactivity was observed using IFAT. However, sera from animals infected with S. falcatula-like and S. neurona presented the same pattern of antigenic recognition when S. neurona merozoites were used as antigen in WB, including reactivity to proteins of 30 and 16 kDa, regarded as specific markers for S. neurona-infected animals. Gerbils did not sustain infection by these parasites, although produced antibodies after inoculation. These results are suggestive that other animal species that are exposed to S. falcatula-like, including horses, may present serologic cross-reactivity to S. neurona in WB. IFAT was demonstrated to be more specific that WB for the detection of antibodies to S. falcatula-like and S. neurona in the experimental conditions of this study.


Assuntos
Antígenos de Protozoários/imunologia , Sarcocystis/imunologia , Sarcocistose/imunologia , Animais , Antígenos de Superfície/imunologia , Western Blotting/veterinária , Linhagem Celular , Galinhas , Chlorocebus aethiops , Reações Cruzadas , Didelphis/parasitologia , Encefalomielite/imunologia , Encefalomielite/parasitologia , Encefalomielite/veterinária , Feminino , Imunofluorescência/veterinária , Gerbillinae , Epitopos Imunodominantes/imunologia , Reação em Cadeia da Polimerase , Sarcocistose/parasitologia , Sarcocistose/patologia , Células Vero
2.
Int J Parasitol Parasites Wildl ; 10: 132-137, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31516824

RESUMO

Most reported isolates of Sarcocystis spp. derived from Brazilian opossums (Didelphis sp.) have genetic characteristics distinct from the known species of Sarcocystis, but behave similarly as Sarcocystis falcatula, as they are infective to budgerigars. In previous studies, these Brazilian isolates, classified as Sarcocystis falcatula-like, were originated from South and Southeast regions of Brazil. In the current work, we aimed to culture and to perform multilocus sequence analysis of Sarcocystis sp. derived from a Brazilian opossum (D. aurita/D. marsupialis) that inhabited the city of Salvador, Bahia, in the Northeast of Brazil. The parasite was isolated in Vero cells, referred here as Sarco-BA1, and propagated in avian cells (DF-1). Molecular analysis of Sarco-BA1 revealed that the nucleotide sequence of the internal transcribed spacer 1 (ITS1) of the rDNA was identical to all isolates (n = 19) of Sarcocystis spp. reported in two studies from South and Southeast regions of the country. Two budgerigars were inoculated with 10 and 1000 sporocysts of Sarco-BA1, respectively, and developed acute sarcocystosis, showing that the parasite behaves like S. falcatula. It was interesting to observe that Sarco-BA1 had almost identical ITS1 and SAG sequences to all 16 isolates of S. falcatula-like recently described in Magellanic penguins (Spheniscus magellanicus) rescued on the coast of Espírito Santo state, Brazil. Our results suggest that Sarco-BA1 and S. falcatula-like may represent a single species of Sarcocystis. Propagation of the parasite in a permanent avian cell line significantly improved the yield of merozoites in cell culture. To our knowledge, this is the first molecular study and in vitro isolation of S. falcatula-like derived from Northeastern Brazil. Studies are under way to determine the infectivity of Sarco-BA1 to other animal species, as well as to investigate serological cross-reactivity among Sarco-BA1, S. neurona and related species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA