Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(15): 2165-2182, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386746

RESUMO

Sulfur mustard (SM) is a blister-producing chemical warfare agent which could lead to a cascade of systemic damage, especially severe acute lung injury. Oxidative stress is considered to be vital processes for the SM toxicity mechanism. We previously proved the therapeutic effect of exosomes derived from bone marrow mesenchymal stromal cells in promoting the repair of alveolar epithelial barrier and inhibiting apoptosis. However, the key functional components in exosomes and the underlying mechanisms have not been fully elaborated. This research shed light on the function of the key components of human umbilical cord mesenchymal stem cell-derived exosomes (HMSCs-Ex). We noted that HMSCs-Ex-derived miR-199a-5p played a vital role in reducing pneumonocyte oxidative stress and apoptosis by reducing reactive oxygen species, lipid peroxidation products and increasing the activities of antioxidant enzymes in BEAS-2B cells and mouse models after exposure to SM for 24 h. Furthermore, we demonstrated that the overexpression of miR-199a-5p in HMSCs-Ex treatment induced a further decrease of Caveolin1 and the activation of the mRNA and protein level of NRF2, HO1 and NQO1, compared with HMSCs-Ex administration. In summary, miR-199a-5p was one of the key molecules in HMSCs-Ex that attenuated SM-associated oxidative stress via regulating CAV1/NRF2 signalling pathway.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Gás de Mostarda , Animais , Humanos , Camundongos , Exossomos/genética , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Gás de Mostarda/toxicidade , Gás de Mostarda/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética
2.
Stem Cell Res Ther ; 14(1): 149, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254188

RESUMO

BACKGROUND: Sulfur mustard (SM) is a highly toxic chemical warfare agent that has caused numerous casualties during wars and conflicts in the past century. Specific antidotes or therapeutic strategies are rare due to the complicated mechanism of toxicity, which still awaits elucidation. Clinical data show that acute lung injury (ALI) is responsible for most mortality and morbidity after SM exposure. Extracellular vesicles are natural materials that participate in intercellular communication by delivering various substances and can be modified. In this study, we aim to show that extracellular vesicles derived from human umbilical cord mesenchymal stromal cells (hucMSC-EVs) could exert therapeutic effects on SM-induced ALI, and to explain the underlying mechanism of effects. METHODS: MiR-146a-5p contained in hucMSC-EVs may be involved in the process of hucMSC-EVs modulating the inflammatory response to SM-induced ALI. We utilized miR-146a-5p delivered by extracellular vesicles and further modified hucMSCs with a miR-146a-5p mimic or inhibitor to collect miR-146a-5p-overexpressing extracellular vesicles (miR-146a-5p+-EVs) or miR-146a-5p-underexpressing extracellular vesicles (miR-146a-5p--EVs), respectively. Through in vivo and in vitro experiments, we investigated the mechanism. RESULTS: The effect of miR-146a-5p+-EVs on improving the inflammatory reaction tied to SM injury was better than that of hucMSC-EVs. We demonstrated that miR-146a-5p delivered by hucMSC-EVs targeted TRAF6 to negatively regulate inflammation in SM-induced ALI models in vitro and in vivo. CONCLUSION: In summary, miR-146a-5p delivered by hucMSC-EVs targeted TRAF6, causing hucMSC-EVs to exert anti-inflammatory effects in SM-induced ALI; thus, hucMSC-EVs treatment may be a promising clinical therapeutic after SM exposure.


Assuntos
Vesículas Extracelulares , MicroRNAs , Gás de Mostarda , Humanos , MicroRNAs/genética , Gás de Mostarda/toxicidade , Fator 6 Associado a Receptor de TNF , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Inflamação
3.
Acta Pharmacol Sin ; 42(12): 2082-2093, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33654219

RESUMO

Sulfur mustard (SM) is a highly toxic chemical warfare agent that causes acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). There are no effective therapeutic treatments or antidotes available currently to counteract its toxic effects. Our previous study shows that bone marrow-derived mesenchymal stromal cells (BMSCs) could exert therapeutic effects against SM-induced lung injury. In this study, we explored the therapeutic potential of BMSC-derived exosomes (BMSC-Exs) against ALI and the underlying mechanisms. ALI was induced in mice by injection of SM (30 mg/kg, sc) at their medial and dorsal surfaces. BMSC-Exs (20 µg/kg in 200 µL PBS, iv) were injected for a 5-day period after SM exposure. We showed that BMSC-Exs administration caused a protective effect against pulmonary edema. Using a lung epithelial cell barrier model, BMSC-Exs (10, 20, 40 µg) dose-dependently inhibited SM-induced cell apoptosis and promoted the recovery of epithelial barrier function by facilitating the expression and relocalization of junction proteins (E-cadherin, claudin-1, occludin, and ZO-1). We further demonstrated that BMSC-Exs protected against apoptosis and promoted the restoration of barrier function against SM through upregulating G protein-coupled receptor family C group 5 type A (GPRC5A), a retinoic acid target gene predominately expressed in the epithelial cells of the lung. Knockdown of GPRC5A reduced the antiapoptotic and barrier regeneration abilities of BMSC-Exs and diminished their therapeutic effects in vitro and in vivo. BMSC-Exs-caused upregulation of GPRC5A promoted the expression of Bcl-2 and junction proteins via regulating the YAP pathway. In summary, BMSC-Exs treatment exerts protective effects against SM-induced ALI by promoting alveolar epithelial barrier repair and may be an alternative approach to stem cell-based therapy.


Assuntos
Lesão Pulmonar Aguda/terapia , Exossomos/transplante , Células-Tronco Mesenquimais/citologia , Transdução de Sinais/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Células Epiteliais/metabolismo , Técnicas de Inativação de Genes , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos ICR , Camundongos Knockout , Gás de Mostarda , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Sinalização YAP/metabolismo
4.
Cell Death Dis ; 11(1): 6, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31919341

RESUMO

Aflatoxin B1 (AFB1) is a potent hepatocarcinogen in humans and exposure to AFB1 is known to cause both acute and chronic hepatocellular injury. As the liver is known to be the main target organ of aflatoxin, it is important to identify the key molecules that participate in AFB1-induced hepatotoxicity and to investigate their underlying mechanisms. In this study, the critical role of caveolin-1 in AFB1-induced hepatic cell apoptosis was examined. We found a decrease in cell viability and an increase in oxidation and apoptosis in human hepatocyte L02 cells after AFB1 exposure. In addition, the intracellular expression of caveolin-1 was increased in response to AFB1 treatment. Downregulation of caveolin-1 significantly alleviated AFB1-induced apoptosis and decreased cell viability, whereas overexpression of caveolin-1 reversed these effects. Further functional analysis showed that caveolin-1 participates in AFB1-induced oxidative stress through its interaction with Nrf2, leading to the downregulation of cellular antioxidant enzymes and the promotion of oxidative stress-induced apoptosis. In addition, caveolin-1 was found to regulate AFB1-induced autophagy. This finding was supported by the effect that caveolin-1 deficiency promoted autophagy after AFB1 treatment, leading to the inhibition of apoptosis, whereas overexpression of caveolin-1 inhibited autophagy and accelerated apoptosis. Interestingly, further investigation showed that caveolin-1 participates in AFB1-induced autophagy by regulating the EGFR/PI3K-AKT/mTOR signaling pathway. Taken together, our data reveal that caveolin-1 plays a crucial role in AFB1-induced hepatic cell apoptosis via the regulation of oxidation and autophagy, which provides a potential target for the development of novel treatments to combat AFB1 hepatotoxicity.


Assuntos
Aflatoxina B1/toxicidade , Autofagia/efeitos dos fármacos , Caveolina 1/metabolismo , Fígado/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...