Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931967

RESUMO

Flexible sensors are prone to the problems of slow recovery rate and large residual strain in practical use. In this paper, a polyurethane functional composite with a gradient change in elastic modulus is proposed as a flexible sensor to meet the recovery rate and residual strain without affecting the motion. Different hard and soft segment ratios are used to synthesize a gradient polyurethane structure. The conductive percolation threshold was obtained between 45 wt% and 50 wt% of flake silver powder. Both gradient polyurethane and gradient polyurethane composites demonstrated that gradient materials can increase the recovery rate and reduce residual strain. The gradient polyurethane composites had a tensile strength of 3.26 MPa, an elastic modulus of 2.58 MPa, an elongation at break of 245%, a sensitivity coefficient of 1.20 at 0-25% deformation, a sensitivity coefficient of 11.38 at 25-75% deformation, a rate of recovery of 1.95 s at a time, and a resistance to fatigue (over 1000 cycles at a fixed strain of 20% showed a stable electrical response). The sensing performance under different cyclic strain frequencies was also investigated. The process has practical applications in the field of wearable skin motion and health monitoring.

2.
Nanomaterials (Basel) ; 14(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786808

RESUMO

In this paper, we designed and investigated a reduction-based method to synthesize controllably monodisperse superparamagnetic nano Fe3O4 colloidal clusters for magnetically responsive photonic crystals. It was shown that the addition of ascorbic acid (VC) to the system could synthesize monodisperse superparamagnetic nano Fe3O4 and avoided the generation of γ-Fe2O3 impurities, while the particle size and saturation magnetization intensity of nano Fe3O4 gradually decreased with the increase of VC dosage. Nano Fe3O4 could be rapidly assembled into photonic crystal dot matrix structures under a magnetic field, demonstrating tunability to various diffraction wavelengths. The nano Fe3O4 modified by polyvinylpyrrolidone (PVP) and silicon coated could be stably dispersed in a variety of organic solvents and thus diffracted different wavelengths under a magnetic field. This is expected to be applied in various scenarios in the field of optical color development.

3.
Nanomaterials (Basel) ; 13(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37368270

RESUMO

With the growing demands of human beings, sanitary landfill, along with the increase in landfill depth and leachate water pressure, has put forward new and higher requirements for the impermeable layer. In particular, it is required to have a certain adsorption capacity of harmful substances from the perspective of environmental protection. Hence, the impermeability of polymer bentonite-sand mixtures (PBTS) at different water pressure and the adsorption properties of polymer bentonite (PBT) on contaminants were investigated through the modification of PBT using betaine compounded with sodium polyacrylate (SPA). It was found that the composite modification of betaine and SPA could reduce the average particle size of PBT dispersed in water (reduced to 106 nm from 201 nm) and enhance the swelling properties. As the content of SPA increased, the hydraulic conductivity of PBTS system decreases and the permeability resistance improves, while the resistance to external water pressure increases. It is proposed a concept of the potential of osmotic pressure in a constrained space to explain the impermeability mechanism of PBTS. The potential of osmotic pressure obtained by linear extrapolation of the trendline of colloidal osmotic pressure versus mass content of PBT could represent the external water pressure that the PBT resist. Additionally, the PBT also has a high adsorption capacity for both organic pollutants and heavy metal ions. The adsorption rate of PBT was up to 99.36% for phenol; up to 99.9% for methylene blue; and 99.89%, 99.9%, and 95.7% for low concentrations of Pb2+, Cd2+, and Hg+, respectively. This work is expected to provide strong technical support for the future development in the field of impermeability and removal of hazardous substances (organic and heavy metals).

4.
Materials (Basel) ; 15(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744329

RESUMO

Ester exchange glycolysis of flexible polyurethane foam (PU) usually results in split-phase products, and the recovered polyether polyols are obtained after separation and purification, which can easily cause secondary pollution and redundancy. In this paper, we propose a green recycling process for the degradation of waste polyurethane foam by triblock polyether, and the degradation product can be used directly as a whole. The polyurethane foam can be completely degraded at a minimum mass ratio of 1.5:1. The secondary full utilization of the degradation product as a whole was directly synthesized into recycled polyurethane foam, and the compression cycle test proved that the excess glycolysis agent had less effect on the resilience of the recycled foam. The hydrophobic modification of the recycled foam was carried out, and the oil absorption performance of the recycled foam before and after the hydrophobic modification was compared. The oil absorption capacity for diesel oil ranged from 4.3 to 6.7, while the oil absorption performance of the hydrophobic modified recycled foam was significantly improved and had excellent reusability (absorption-desorption oil processes can be repeated at least 25 times). This economical and green process has large-scale application prospects, and the hydrophobic recycling foam can be applied to the field of oil and water separation.

5.
Polymers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458346

RESUMO

Organogel adsorbents are widely used for the adsorption of hard-to-degrade organic pollutants in wastewater due to their natural affinity to the organic phase in water. In this study, phenolic xerogels (PF) synthesised in the ethylene glycol inorganic acid system are used as a backbone and superhydrophobic phenolic xerogels (ASO-PF) are obtained by grafting aminosilanes onto the PF backbone via the Mannich reaction. The modified ASO-PF not only retains the pore structure of the original PF (up to 90% porosity), but also has excellent superhydrophobic properties (water contact angle up to 153°). Owing to the unique pore structure, ASO-PF has excellent compression properties, cycling 50% compression deformation more than 10 times without being damaged, with a maximum compression deformation of up to 80%. A squeeze-suction-squeeze approach is proposed for selective adsorption of organic pollutants in homogeneous solutions based on the recyclable compression properties of ASO-PF. The ASO-PF is put under negative pressure by squeezing, and when the pressure is released, the adsorbed liquid enters the ASO-PF, where the organic pollutants are retained by the adsorption sites in the skeleton, and then the remaining water is discharged by squeezing. This breathing ASO-PF holds great promise for organic pollutant adsorption and recovery applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...