Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(38): e202307995, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37549372

RESUMO

Discovering natural product biosynthetic pathways of medicinal plants is challenging and laborious. Capturing the coregulation patterns of pathway enzymes, particularly transcriptomic regulation, has proven an effective method to accelerate pathway identification. In this study, we developed a yeast-based screening method to capture the protein-protein interactions (PPI) between plant enzymes, which is another useful pattern to complement the prevalent approach. Combining this method with plant multiomics analysis, we discovered four enzyme complexes and their organized pathways from kratom, an alkaloid-producing plant. The four pathway branches involved six enzymes, including a strictosidine synthase, a strictosidine ß-D-glucosidase (MsSGD), and four medium-chain dehydrogenase/reductases (MsMDRs). PPI screening selected six MsMDRs interacting with MsSGD from 20 candidates predicted by multiomics analysis. Four of the six MsMDRs were then characterized as functional, indicating the high selectivity of the PPI screening method. This study highlights the opportunity of leveraging post-translational regulation features to discover novel plant natural product biosynthetic pathways.


Assuntos
Antineoplásicos , Produtos Biológicos , Mitragyna , Alcaloides de Triptamina e Secologanina , Saccharomyces cerevisiae/metabolismo , Mitragyna/metabolismo , Plantas/metabolismo , Antineoplásicos/metabolismo , Produtos Biológicos/metabolismo
2.
bioRxiv ; 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36711573

RESUMO

Discovering natural product biosynthetic pathways from medicinal plants is challenging and laborious, largely due to the complexity of the transcriptomics-driven pathway prediction process. Here we developed a novel approach that captures the protein-level connections between enzymes for pathway discovery with improved accuracy. We proved that heterologous protein-protein interaction screening in yeast enabled the efficient discovery of both dynamic plant enzyme complexes and the pathways they organize. This approach discovered complexes and pathways in the monoterpene indole alkaloid metabolism of a medicinal plant, kratom with high success rate. Screening using a strictosidine ß-D-glucosidase (MsSGD1) against 19 medium-chain dehydrogenase/reductases (MsMDRs) identified five MsSGD1-MsMDR complexes. Three out of the five interacting MsMDRs were then proven functional, while the remaining 14 non-interacting candidates did not show obvious activities. The work discovered three branched pathways by combining transcriptomics, metabolomics, and heterologous PPI screening and demonstrated a new plant pathway discovery strategy.

3.
Curr Opin Plant Biol ; 71: 102314, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36463029

RESUMO

Plant biosynthetic gene clusters (BGCs) contain multiple physically clustered non-homologous genes that encode enzymes catalyzing diverse reactions in one plant natural product biosynthetic pathway. A growing number of plant BGCs have emerged as an underlying resource for understanding plant specialized metabolism and evolution, but the characterization remains challenging. Recent studies have demonstrated that baker's yeast can serve as a versatile platform for the characterization of plant BGCs, from single-gene characterization to multiple genes and hitherto unknown putative BGC validation and elucidation. In this review, we will summarize the strategies and examples of the applications of yeast in plant BGC characterization and share our perspective on the development of a systematic pipeline to fully leverage yeast to advance the understanding of plant BGCs and plant natural product biomanufacturing.


Assuntos
Produtos Biológicos , Biologia Computacional , Saccharomyces cerevisiae , Família Multigênica , Produtos Biológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...