Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 14(2): 204-207, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38327193

RESUMO

PIK3CA, which encodes the p110α catalytic subunit of PI 3-kinase alpha (PI3Kα), is one of the most frequently genetically activated kinases in solid tumors. In two back-to-back papers, Varkaris and colleagues report on the development of a novel allosteric PI3Kα-mutant-selective inhibitor and early clinical experience with this compound. See related article by Varkaris et al., p. 227 (6) . See related article by Varkaris et al., p. 240 (5) .


Assuntos
Antineoplásicos , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/genética , Mutação , Inibidores de Fosfoinositídeo-3 Quinase , Classe I de Fosfatidilinositol 3-Quinases/genética , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Nature ; 618(7963): 159-168, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225977

RESUMO

Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.


Assuntos
Regeneração Nervosa , Humanos , Neoplasias/tratamento farmacológico , Regeneração Nervosa/efeitos dos fármacos , Isoformas de Proteínas/agonistas , Transdução de Sinais/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/química , Classe I de Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Cardiotônicos/farmacologia , Animais , Biocatálise/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Compressão Nervosa , Proliferação de Células/efeitos dos fármacos
3.
J Biol Chem ; 294(12): 4621-4633, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30659094

RESUMO

Phosphoinositide 3-kinase ß (PI3Kß) is regulated by receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and small GTPases such as Rac1 and Rab5. Our lab previously identified two residues (Gln596 and Ile597) in the helical domain of the catalytic subunit (p110ß) of PI3Kß whose mutation disrupts binding to Rab5. To better define the Rab5-p110ß interface, we performed alanine-scanning mutagenesis and analyzed Rab5 binding with an in vitro pulldown assay with GST-Rab5GTP Of the 35 p110ß helical domain mutants assayed, 11 disrupted binding to Rab5 without affecting Rac1 binding, basal lipid kinase activity, or Gßγ-stimulated kinase activity. These mutants defined the Rab5-binding interface within p110ß as consisting of two perpendicular α-helices in the helical domain that are adjacent to the initially identified Gln596 and Ile597 residues. Analysis of the Rab5-PI3Kß interaction by hydrogen-deuterium exchange MS identified p110ß peptides that overlap with these helices; no interactions were detected between Rab5 and other regions of p110ß or p85α. Similarly, the binding of Rab5 to isolated p85α could not be detected, and mutations in the Ras-binding domain (RBD) of p110ß had no effect on Rab5 binding. Whereas soluble Rab5 did not affect PI3Kß activity in vitro, the interaction of these two proteins was critical for chemotaxis, invasion, and gelatin degradation by breast cancer cells. Our results define a single, discrete Rab5-binding site in the p110ß helical domain, which may be useful for generating inhibitors to better define the physiological role of Rab5-PI3Kß coupling in vivo.


Assuntos
Neoplasias da Mama/patologia , Invasividade Neoplásica , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Sítios de Ligação , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Quimiotaxia , Gelatina/metabolismo , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Mutação , Fosfatidilinositol 3-Quinase/genética , Ligação Proteica
4.
Biochem J ; 474(13): 2261-2276, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28526744

RESUMO

Phosphoinositide 3-kinases (PI3Ks) are major regulators of many cellular functions, and hyperactivation of PI3K cell signalling pathways is a major target for anticancer drug discovery. PI3Kα is the isoform most implicated in cancer, and our aim is to selectively inhibit this isoform, which may be more beneficial than concurrent inhibition of all Class I PI3Ks. We have used structure-guided design to merge high-selectivity and high-affinity characteristics found in existing compounds. Molecular docking, including the prediction of water-mediated interactions, was used to model interactions between the ligands and the PI3Kα affinity pocket. Inhibition was tested using lipid kinase assays, and active compounds were tested for effects on PI3K cell signalling. The first-generation compounds synthesized had IC50 (half maximal inhibitory concentration) values >4 µM for PI3Kα yet were selective for PI3Kα over the other Class I isoforms (ß, δ and γ). The second-generation compounds explored were predicted to better engage the affinity pocket through direct and water-mediated interactions with the enzyme, and the IC50 values decreased by ∼30-fold. Cell signalling analysis showed that some of the new PI3Kα inhibitors were more active in the H1047R mutant bearing cell lines SK-OV-3 and T47D, compared with the E545K mutant harbouring MCF-7 cell line. In conclusion, we have used a structure-based design approach to combine features from two different compound classes to create new PI3Kα-selective inhibitors. This provides new insights into the contribution of different chemical units and interactions with different parts of the active site to the selectivity and potency of PI3Kα inhibitors.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Antineoplásicos/química , Antineoplásicos/farmacologia , Domínio Catalítico , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...