Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 118: 109325, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36958418

RESUMO

The molecular mechanisms underlying the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease (PD), and Huntington's disease remain enigmatic, resulting in an unmet need for therapeutics development. Here, we suggest that filbertone, a key flavor compound found in the fruits of hazel trees of the genus Corylus, can ameliorate PD via lowering the abundance of aggregated α-synuclein. We previously reported that inhibition of hypothalamic inflammation by filbertone is mediated by suppression of nuclear factor kappa-B. Here, we report that filbertone activates PERK through mitochondrial reactive oxygen species production, resulting in the increased nuclear translocation of transcription factor-EB in SH-SY5Y human neuroblastoma cells. TFEB activation by filbertone promotes the autophagy-lysosomal pathway, which in turn alleviates the accumulation of α-synuclein. We also demonstrate that filbertone prevented the loss of dopaminergic neurons in the substantia nigra and striatum of mice on high-fat diet. Filbertone treatment also reduced high-fat diet-induced α-synuclein accumulation through upregulation of the autophagy-lysosomal pathway. In addition, filbertone improved behavioral abnormalities (i.e., latency time to fall and decrease of running distance) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD murine model. In conclusion, filbertone may show promise as a potential therapeutic for neurodegenerative disease.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Camundongos , Animais , alfa-Sinucleína/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neuroblastoma/patologia , Doença de Parkinson/tratamento farmacológico , Autofagia/fisiologia , Neurônios Dopaminérgicos/metabolismo , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
2.
Aging (Albany NY) ; 14(3): 1233-1252, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166693

RESUMO

The protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK), a key ER stress sensor of the unfolded protein response (UPR), can confer beneficial effects by facilitating the removal of cytosolic aggregates through the autophagy-lysosome pathway (ALP). In neurodegenerative diseases, the ALP ameliorates the accumulation of intracellular protein aggregates in the brain. Transcription factor-EB (TFEB), a master regulator of the ALP, positively regulates key genes involved in the cellular degradative pathway. However, in neurons, the role of PERK activation in mitigating amyloidogenesis by ALP remains unclear. In this study, we found that SB202190 selectively activates PERK independently of its inhibition of p38 mitogen-activated protein kinase, but not inositol-requiring transmembrane kinase/endoribonuclease-1α (IRE1α) or activating transcription factor 6 (ATF6), in human neuroblastoma cells. PERK activation by SB202190 was dependent on mitochondrial ROS production and promoted Ca2+-calcineurin activation. The activation of the PERK-Ca2+-calcineurin axis by SB202190 positively affects TFEB activity to increase ALP in neuroblastoma cells. Collectively, our study reveals a novel physiological mechanism underlying ALP activation, dependent on PERK activation, for ameliorating amyloidogenesis in neurodegenerative diseases.


Assuntos
Amiloide , Endorribonucleases , Imidazóis , Neuroblastoma , Piridinas , eIF-2 Quinase , Amiloide/biossíntese , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Calcineurina/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Humanos , Imidazóis/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Neuroblastoma/metabolismo , Proteínas Serina-Treonina Quinases , Piridinas/farmacologia , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...