Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 277: 126319, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38805946

RESUMO

The prompt and accurate point-of-care test (POCT) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected persons or virus-containing environmental samples is of great importance. The present work reports a highly integrated electrochemiluminescence/electrochemical (ECL/EC) sensor for determination of SARS-CoV-2 pseudoviruses, in which bio-recognition element (SARS-CoV-2 IgG antibody), bifunctional probe (tris (2,2'-bipyridyl) ruthenium (Ru(bpy)32+)), and amplification material (gold nanoparticles (Au NPs)) are designed into bipolar silica nanochannel array (bp-SNA). bp-SNA consisting of homogeneous two-layer mesoporous silica films bears inner silanol groups and outer amino groups, generating a solid "electrostatic nanocage" for stable confinement of Ru(bpy)32+ and Au NPs inside the nanochannels and further providing functional sites for covalent modification of SARS-CoV-2 IgG antibody. Owing to the preconcentration capacity of bp-SNA and amplified effect of Au NPs, ECL or EC signals of Ru(bpy)32+ can be remarkably promoted and thereby increase the analytical performance, which can be diminished by immunorecognization of target SARS-CoV-2 pseudoviruses on the sensing interface. The developed integrated ECL/EC sensor based on Ru@AuNPs/bp-SNA modified solid indium tin oxide electrode enables the sensitive analysis of SARS-CoV-2 pseudoviruses by ECL mode with a linear range of 50 TU mL-1-5000 TU mL-1, as well as the EC mode with a linear range of 100 TU mL-1-5000 TU mL-1. Moreover, the designed sensor showed satisfactory results in the analyses of saliva and pond water samples. When flexible electrode substate (polyethylene terephthalate) is employed, Ru@AuNPs/bp-SNA has great potential to integrate with KN95 face masks for direct detection of SARS-CoV-2 pseudoviruses produced from breathing, talking and coughing processes, which could provide an efficient platform for POCT diagnosis.

2.
J Pharm Biomed Anal ; 236: 115709, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37690188

RESUMO

The co-administration of isoniazid (INH) and rifampicin (RIF) is associated with hepatotoxicity and neurotoxicity. To systematically investigate the mechanisms of hepatotoxicity and neurotoxicity induced by INH/RIF, we used high performance liquid chromatography-time of flight mass spectrometry (HPLC-TOF/MS)-based untargeted metabolomics to analyze urine from a mouse model and screened a range of urinary biomarkers. Mice were orally co-administered with INH (120 mg/kg) and RIF (240 mg/kg) and urine samples were collected on days 0, 7, 14 and 21. Hepatotoxicity and neurotoxicity were assessed by samples of liver, brain and kidney tissue which were harvested for histological analysis. Toxicity analysis revealed that INH/RIF caused hepatotoxicity and neurotoxicity in a time-dependent manner; compared with day 0, the levels of 35, 82 and 86 urinary metabolites were significantly different on days 7, 14 and 21, respectively. Analysis showed that by day 21, exposure to INH+RIF had caused disruption in vitamin B6 metabolism; the biosynthesis of unsaturated fatty acids; tyrosine, taurine, hypotaurine metabolism; the synthesis of ubiquinone and other terpenoid-quinones; and the metabolism of tryptophan, nicotinate and nicotinamide. Nicotinic acid, nicotinuric acid and kynurenic acid were identified as sensitive urinary biomarkers that may be useful for the diagnosis and evaluation of toxicity.

3.
Neurotoxicology ; 94: 24-34, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347327

RESUMO

Isoniazid (INH) and rifampicin (RIF) are co-administered in tuberculosis treatment but can cause neurotoxicity, and the mechanism is not known. To explore this mechanism, we employed an integrated approach using metabolomics analysis (MA) and proteomics analysis (PA). Male mice were divided into three groups and administered vehicle (control group), or co-administered INH (120 mg/kg) and RIF (240 mg/kg), for 7 or 14 days. Mice brains were collected for mass spectrometry-based PA and MA plus lipidomics analysis. Measurement of brain levels of malondialdehyde and superoxide dismutase revealed time-dependent brain injury after exposure to INH+RIF for 7 and 14 days. Also, 422 proteins, 35 metabolites, and 21 lipids were dysregulated and identified. MA demonstrated "purine metabolism," "phenylalanine, tyrosine and tryptophan biosynthesis," "biosynthesis of unsaturated fatty acids," "phenylalanine metabolism," and "arginine biosynthesis" to be disturbed significantly. PA demonstrated pathways such as "lipids," "amino acids," and "energy metabolism" to be disrupted. Peroxisome proliferator-activated receptor (PPAR) pathways were changed in energy metabolism, which led to the neurotoxicity induced by INH+RIF. Immunohistochemical analyses of PPARs in mice brains verified that PPAR-α and -γ expression was downregulated. PPAR-α and -γ activation might be a key target for alleviating INH+RIF-induced neurotoxicity.


Assuntos
Isoniazida , Rifampina , Camundongos , Masculino , Animais , Isoniazida/toxicidade , Rifampina/toxicidade , Receptores Ativados por Proliferador de Peroxissomo , Proteômica , Lipídeos
4.
J Biochem Mol Toxicol ; 36(12): e23217, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36111668

RESUMO

The hepatotoxic mechanism resulting from coadministration of isoniazid (INH) and rifampicin (RIF) are complex and studies remain inconclusive. To systematically explore the underlying mechanisms, an integrated mass-based untargeted metabolomics and label-free quantitative proteomics approach was used to clarify the mechanism of INH/RIF-induced liver injury. Thirty male mice were randomly divided into three groups: control (receiving orally administered vehicle solution), INH (150 mg/kg) + RIF (300 mg/kg) orally administered for either 7 or 14 days, respectively. Serum was collected for the analysis of biochemical parameters and liver samples were obtained for mass spectrum-based proteomics, metabolomics, and lipidomics analysis. Overall, 511 proteins, 31 metabolites, and 23 lipids were dysregulated and identified, and disordered biological pathways were identified. The network of integrated multiomics showed that glucose, lipid, and amino acid metabolism as well as energy metabolism were mainly dysregulated and led to oxidative stress, inflammation, liver steatosis, and cell death induced by INH and RIF. Coadministration of INH and RIF can induce liver injury by oxidative stress, inflammation, liver steatosis, and cell death, and the reduction in glutathione levels may play a critical role in these systematic changes and warrants further study.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Isoniazida , Rifampina , Animais , Masculino , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado Gorduroso/metabolismo , Inflamação/metabolismo , Isoniazida/toxicidade , Fígado/metabolismo , Proteômica , Rifampina/toxicidade
5.
Biosens Bioelectron ; 215: 114563, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870336

RESUMO

Ultrasensitive, specific, and early identification of Coronavirus Disease (2019) (COVID-19) infection is critical to control virus spread and remains a global public health problem. Herein, we present a novel solid-state electrochemiluminescence (ECL) platform targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody with rapidity and ultrahigh sensitivity, in which a bipolar silica nanochannel array (bp-SNA) is fabricated on indium tin oxide (ITO) electrode for the first time to stably confine the ECL probe of tris(2,2'-bipyridyl) ruthenium (Ru(bpy)32+) under dual electrostatic force. The bp-SNA consists of tightly packed bilayer silica nanochannel array (SNA) with asymmetric surface charges, namely an inner negatively charged SNA (n-SNA) and an outer positively charged SNA (p-SNA), serving as an "electrostatic lock" to enrich and stabilize the cationic Ru(bpy)32+ probe without leakage from the electrode surface. The detection of SARS-CoV-2 IgG antibody could be realized via immobilization of SARS-CoV-2 spike protein on the utmost of Ru(bpy)32+-confined solid-state ECL platform (Ru@bp-SNA). Upon the capture of target SARS-CoV-2 IgG by immune recognition, the formed immunocomplex will block the nanochannel, leading to the hindered diffusion of the co-reactant (tri-n-propylamine, TPrA) and further producing a decreased ECL signal. The developed solid-stated ECL immunosensor is able to determine SARS-CoV-2 IgG with a wide linear range (5 pg mL-1 to 1 µg mL-1), a low limit-of-detection (2.9 pg mL-1), and a short incubation time (30 min). Furthermore, accurate analysis of SARS-CoV-2 IgG in real serum samples is also obtained by the sensor.


Assuntos
Técnicas Biossensoriais , COVID-19 , COVID-19/diagnóstico , Técnicas Eletroquímicas , Humanos , Imunoensaio , Imunoglobulina G , Medições Luminescentes , SARS-CoV-2 , Dióxido de Silício , Glicoproteína da Espícula de Coronavírus
6.
Talanta ; 238(Pt 1): 123027, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34857346

RESUMO

Direct, rapid and sensitive detection of physiologically-relevant active small molecules (ASMs) in complex biological samples is highly desirable. Herein, we present an electrochemical sensing platform by combining three-dimensional macroscopic graphene (3DG) and vertically-ordered mesoporous silica-nanochannel film (VMSF), which is able to directly detect ASMs in complex samples with high sensitivity and no need of tedious pretreatment. Free-standing and macroscopic 3DG serves as the supporting electrode and O2-plasma treatment is proposed as a simple and green approach to improve its hydrophilicity and electrochemical activity. The plasma-treated 3DG (pl-3DG) is suitable for stable modification of VMSF using electrochemically assisted self-assembly (EASA) method, conferring the electrode (VMSF/pl-3DG) with excellent anti-fouling properties. As the proof-of-concept demonstration, VMSF/pl-3DG sensor exhibits fast and ultrasensitive determination of uric acid (UA) with ultralow limit of detection (LOD, 23 nM) owing to high active surface, unhindered mass transfer, good electrical transfer of 3DG and signal amplification of VMSF nanochannel. Direct determination of UA in biological sample (serum) is also realized without the need of tedious pretreatment.


Assuntos
Grafite , Técnicas Eletroquímicas , Eletrodos , Dióxido de Silício , Ácido Úrico
7.
Front Chem ; 9: 770512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881226

RESUMO

Three-dimensional (3D) electrochemiluminescence (ECL) platform with high sensitivity and good anti-fouling is highly desirable for direct and sensitive analysis of complex samples. Herein, a novel ECL-sensing platform is demonstrated based on the equipment of vertically ordered mesoporous silica-nanochannel films (VMSF) on monolithic and macroporous 3D graphene (3DG). Through electrografting of 3-aminopropyltriethoxysilane (APTES) onto 3DG as molecular glue, VMSF grown by electrochemically assisted self-assembly (EASA) method fully covers 3DG surface and displays high stability. The developed VMSF/APTES/3DG sensor exhibits highly sensitized ECL response of tris(2,2'-bipyridyl) ruthenium (Ru (bpy)3 2+) taking advantages of the unique characteristics of 3DG (high active area and conductivity) and VMSF nanochannels (strong electrostatic enrichment). The VMSF/APTES/3DG sensor is applied to sensitively detect an important environmental pollutant (4-chlorophenol, with limit of detection or LOD of 30.3 nM) in term of its quenching effect (ECL signal-off mode) toward ECL of Ru (bpy)3 2+/tri-n-propylamine (TPrA). The VMSF/APTES/3DG sensor can also sensitively detect the most effective antihistamines chlorpheniramine (with LOD of 430 nM) using ECL signal-on mode because it acts as co-reactant to promote the ECL of Ru (bpy)3 2+. Combined with the excellent antifouling ability of VMSF, the sensor can also realize the analysis of actual environmental (lake water) and pharmaceutical (pharmacy tablet) samples. The proposed 3D ECL sensor may open new avenues to develop highly sensitive ECL-sensing platform.

8.
Front Chem ; 9: 658045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996752

RESUMO

Sulfide ions (S2-) that are widely distributed in biological and industrial fields are extremely toxic and pose great harms to both ecological environment and human health. However, fluorescent sensors toward S2- ions commonly use S2--recovered fluorescence of fluorophore that is first quenched mainly by metal ions. Fluorescent probe which enables direct, selective, and sensitive detection of S2- ion is highly desirable. Herein, we demonstrate one-step preparation of fluorescent ionic liquid-graphene quantum dots (IL-GQDs) nanocomposite, which can act as a fluorescent probe for direct and sensitive detection of S2- ion. The IL-GQDs nanocomposite is easily synthesized via facile molecular fusion of carbon precursor and in situ surface modification of GQDs by IL under hydrothermal condition. The as-prepared IL-GQDs nanocomposite has uniform and ultrasmall size, high crystallinity, and bright green fluorescence (absolute photoluminescence quantum yield of 18.2%). S2- ions can strongly and selectively quench the fluorescence of IL-GQDs because of the anion exchange ability of IL. With IL-GQDs nanocomposite being fluorescent probe, direct and sensitive detection of S2- is realized with a linear detection range of 100nM-10µM and 10µM-0.2mM (limit of detection or LOD of 23nM). Detection of S2- ions in environmental river water is also achieved.

9.
Planta ; 253(2): 41, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33475870

RESUMO

MAIN CONCLUSION: A genome-wide analysis of longan miRNA genes was conducted, and full-length pri-miRNA transcripts were cloned. Bioinformatics and expression analyses contributed to the functional characterization of longan miRNA genes. MicroRNAs are important for the post-transcriptional regulation of target genes. However, little is known about the transcription and regulation of miRNA genes in longan (Dimocarpus longan Lour.). In this study, 80 miRNA precursors (pre-miRNA) were predicted, and their secondary structure, size, conservation, and diversity were analyzed. Furthermore, the full-length cDNA sequences of 13 longan primary miRNAs (pri-miRNAs) were amplified by RLM-RACE and SMART-RACE and analyzed, which revealed that longan pri-miRNA transcripts have multiple transcription start sites (TSSs) and the downstream pre-miRNAs are polymorphic. Accordingly, the longan pri-miRNAs and protein-encoding genes may have similar transcriptional specificities. An analysis of the longan miRNA gene promoter elements indicated that the three most abundant cis-acting elements were light-responsive, stress-responsive, and hormone-responsive elements. A quantitative real-time PCR assay elucidated the potential spatial and temporal expression patterns of longan pre-miRNAs during the early stages of somatic embryogenesis (SE) and in different longan organs/tissues. This is the first report regarding the molecular characterization of miRNA genes and their expression profiles in longan. The generated data may serve as a foundation for future research aimed at clarifying the longan miRNA gene functions.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs , Sapindaceae , Biologia Computacional , MicroRNAs/genética , Sapindaceae/genética
10.
Appl Soft Comput ; 102: 107118, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36570416

RESUMO

Network teaching has been widely developed under the influence of COVID-19 pandemic to guarantee the implementation of teaching plans and protect the learning rights of students. Selecting a particular website for network teaching can directly affects end users' performance and promote network teaching quality. Normally, e-learning website selection can be considered as a complex multi-criteria decision making (MCDM) problem, and experts' evaluations over the performance of e-learning websites are often imprecise and fuzzy due to the subjective nature of human thinking. In this article, we propose a new integrated MCDM approach on the basis of linguistic hesitant fuzzy sets (LHFSs) and the TODIM (an acronym in Portuguese of interactive and multi-criteria decision making) method to evaluate and select the best e-learning website for network teaching. This introduced method deals with the linguistic assessments of experts based on the LHFSs, determines the weights of evaluation criteria with the best-worst method (BWM), and acquires the ranking of e-learning websites utilizing an extended TODIM method. The applicability and superiority of the presented linguistic hesitant fuzzy TODIM (LHF-TODIM) approach are demonstrated through a realistic e-learning website selection example. Results show that the LHF-TODIM model being proposed is more practical and effective for solving the e-learning website selection problem under vague and uncertain linguistic environment.

11.
RSC Adv ; 11(15): 9021-9028, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35423372

RESUMO

Direct and accurate detection of doxorubicin (DOX) in unprocessed human whole blood is of vital importance in medical diagnosis and monitoring. In this work, we demonstrate the utilization of electrochemically pretreated glassy carbon electrodes (p-GCE) modified with vertically-ordered mesoporous silica films (VMSF) for rapid and sensitive electrochemical detection of DOX. The electrochemically pretreated process is a simple, cost-effective and environmentally friendly approach for improving interface catalytic properties and introducing oxygen-containing groups into the GCE surface, which could be suitable for stably growing VMSF without any adhesive layer simultaneously retaining the underlying electrode activity. Benefiting from the highly sensitive electrode substrate of p-GCE and electrostatic preconcentration effect of VMSF, the present VMSF/p-GCE sensor was able to determine DOX with an ultrahigh sensitivity (23.94 µA µM-1) and a relatively low limit of detection (0.2 nM) and a rather wide linear range (0.5 nM to 23 µM). Furthermore, direct and reliable electrochemical detection of DOX in human whole blood without complicated sample pretreatments was achieved owing to the excellent anti-fouling and anti-interference ability of VMSF.

12.
Biochem Pharmacol ; 183: 114299, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148504

RESUMO

Cisplatin (CDDP)-induced acute kidney injury (AKI) limits the therapeutic use of CDDP, which urgently needs to be addressed. Our previous study demonstrated that astragaloside IV (AS IV), an active compound of the traditional Chinese herb Astragalus membranaceus, alleviated CDDP-induced AKI. To explore the mechanism, we performed a metabolomics study to explore the altered metabolic pathways and screen for sensitive biomarkers. Twenty-four rats were randomly divided into three groups, which were treated with vehicle solutions (Control), intraperitoneally injected CDDP, and intraperitoneally injected CDDP plus oral AS IV, respectively. Metabolic profiles of serum, urine, and kidney samples were analyzed by high-performance liquid chromatography-time of flight mass spectrometry. There were 38 key metabolites in the urine samples, 20 in the serum samples, and 16 in the kidney samples that were significantly altered due to AS IV-mediated protection against CDDP-induced AKI relative to CDDP-only treatment. CDDP + AS IV co-treatment significantly altered two pathways in the blood (biosynthesis of unsaturated fatty acids and alanine, aspartate, and glutamate metabolism), five pathways in the urine (phenylalanine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis; arginine biosynthesis; arginine and proline metabolism; and histidine metabolism), and five pathways in the kidneys (glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; arginine and proline metabolism; and D-glutamine and D-glutamate metabolism). The metabolic pathways were mainly associated with improvements in inflammatory responses, oxidative stress, and energy metabolism. Adrenic acid in serum and L-histidine and L-methionine in urine were identified as sensitive biomarkers. This study provides new insights to understand the mechanism of AS IV-mediated protection against CDDP-induced AKI and has identified three candidate biomarkers to evaluate preventative treatment and assess therapeutic effectiveness.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Cisplatino/toxicidade , Metaboloma/fisiologia , Metabolômica/métodos , Saponinas/uso terapêutico , Triterpenos/uso terapêutico , Animais , Antineoplásicos/toxicidade , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Espectrometria de Massas/métodos , Metaboloma/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
13.
Biochim Biophys Acta Mol Cell Res ; 1867(12): 118826, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32810522

RESUMO

BACKGROUND: Rhabdomyosarcoma (RMS) is a pediatric cancer with rhabdomyoblastic phenotype and mitochondria act as pivotal regulators of its growth and progression. While miR-7-5p (miR-7) is reported to have a tumor-suppressive role, little is yet known about its antitumor activity in RMS. METHODS: The effects of miR-7 on RMS were analyzed both in vitro and in vivo. Cell death modalities induced by miR-7 were identified. Influence on mitochondria was evaluated through RNA sequencing data, morphological observation and mitochondrial functional assays, including outer membrane permeability, bioenergetics and redox balance. Dual-luciferase assay and phenotype validation after transient gene silencing were performed to identify miR-7 targets in RMS. RESULTS: MiR-7 executed anti-tumor effect in RMS beyond proliferation inhibition. Morphologic features and molecular characteristics with apoptosis and necroptosis were found in miR-7-transfected RMS cells. Chemical inhibitors of apoptosis and necroptosis were able to prevent miR-7-induced cell death. Further, we identified that mitochondrial impairment mainly contributed to these phenomena and mitochondrial proteins SLC25A37 and TIMM50 were crucial targets for miR-7 to induce cell death in RMS. CONCLUSION: Our results extended the mechanism of miR-7 antitumor role in rhabdomyosarcoma cancer, and provided potential implications for its therapy.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Membrana Transportadoras/genética , MicroRNAs/genética , Proteínas Mitocondriais/genética , Rabdomiossarcoma/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Necroptose/genética , Espécies Reativas de Oxigênio/metabolismo , Rabdomiossarcoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Yi Chuan ; 42(6): 586-598, 2020 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-32694117

RESUMO

Human islet amyloid polypeptide (hIAPP, also known as amylin) is a co-secreting protein of insulin in human pancreatic ß-cells. It is encapsulated in vesicles and secreted out of the cells with insulin. hIAPP can promote insulin secretion and regulate blood glucose homeostasis in the body under the normal physiological conditions. However, hIAPP misfolding or excessive accumulation can cause toxic effects on the ß cells, which in turn affect cell function, resulting in type 2 diabetes mellitus (T2DM) for the affected individuals. In order to eliminate the excessive accumulation of hIAPP in the cell and to maintain its normal synthetic function, we have adopted a new protein degradation technology called Trim-Away, which can degrade the target protein in a short time without affecting the mRNA transcription and translation synthesis function of the target protein. First, we overexpressed hIAPP in the rat insulinoma cells (INS1) to simulate its excessive accumulation and analyzed its effect in INS1 cells by measuring the release of LDH (lactate dehydrogenase), CCK8 activity and PI-Annexin V positive ratio. Results showed that excessive accumulation of hIAPP caused ß cell apoptosis. Second, real-time quantitative PCR analysis and ELISA detection showed that the synthesis and secretion of insulin were hindered. We used Trim-Way technology to specifically eliminate the excessive accumulation of hIAPP protein in hIAPP overexpressing INS1 cells. Cell activity experiments confirmed that clearance of hIAPP reduced the cell death phenotype. Further ELISA experiments confirmed that INS1 cells restored insulin secretion ability. This study examined the toxic effect of hIAPP excessive accumulation in INS1 cells and demonstrated the cytotoxicity clearance effect of Trim-Way technology in pancreatic ß-cells. Our research has provided a new strategy for using Trim-Away technology for treatment of diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Insulinoma , Neoplasias Pancreáticas , Animais , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Neoplasias Pancreáticas/genética , Dobramento de Proteína , Ratos
15.
Int J Biol Sci ; 15(12): 2561-2575, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754329

RESUMO

Diabetes mellitus is characterized by pancreatic ß cell dysfunction. Previous studies have indicated that epidermal growth factor (EGF) and microRNA-124a (miR-124a) play opposite roles in insulin biosynthesis and secretion by beta cells. However, the underlying mechanisms remain poorly understood. In the present study, we demonstrated that EGF could inhibit miR-124a expression in beta cell lines through downstream signaling pathways, including mitogen-activated protein kinase kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) cascades. Further, the transcription factor ETS2, a member of the ETS (E26 transformation-specific) family, was identified to be responsible for the EGF-mediated suppression of miR-124a expression, which was dependent on ETS2 phosphorylation at threonine 72. Activation of ETS2 decreased miR-124a promoter transcriptional activity through the putative conserved binding sites AGGAANA/TN in three miR-124a promoters located in different chromosomes. Of note, ETS2 played a positive role in regulating beta cell function-related genes, including miR-124a targets, Forkhead box a2 (FOXA2) and Neurogenic differentiation 1 (NEUROD1), which may have partly been through the inhibition of miR-124 expression. Knockdown and overexpression of ETS2 led to the prevention and promotion of insulin biosynthesis respectively, while barely affecting the secretion ability. These results suggest that EGF may induce the activation of ETS2 to inhibit miR-124a expression to maintain proper beta cell functions and that ETS2, as a novel regulator of insulin production, is a potential therapeutic target for diabetes mellitus treatment.


Assuntos
Fator de Crescimento Epidérmico/fisiologia , Células Secretoras de Insulina/metabolismo , MicroRNAs/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fosfatidilinositol 3-Quinase/fisiologia , Proteína Proto-Oncogênica c-ets-2/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Transdução de Sinais , Treonina/metabolismo
16.
Aging (Albany NY) ; 11(10): 3198-3219, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138773

RESUMO

Statins, a class of hyperlipidemic drugs, are widely used cholesterol lowering drugs that selectively inhibit 3-hydroxy-3-methylglutaryl CoA reductase, which is the rate-limiting enzyme in cholesterol biosynthesis, leading to decreasing of cholesterol biosynthesis. Statins exert anti-tumoral effects on various cancer, including breast cancer. However, the molecular mechanisms for the actions were not fully elucidated. The purpose of this study was to elucidate the effects of statins on proliferation and apoptosis in the ER-negative breast cancer cell line MDA-MB-231. Our results showed that simvastatin increased the expression of miR-140-5p in a dose dependent manner via activating transcription factor NRF1, reduced cell proliferation and induced apoptosis, and we also found that SLC2A1 was a new target of miR-140-5p. In conclusion, data in this study shed light on the potential anti-tumoral effects of simvastatin in breast cancer and presents a highly promising therapeutic option, using drug and miRNA for combined treating cancers.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , MicroRNAs/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Sinvastatina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Colesterol/biossíntese , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/antagonistas & inibidores , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Sinvastatina/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo
17.
Mater Sci Eng C Mater Biol Appl ; 95: 1-10, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573229

RESUMO

The development of an ideal scaffold material is critical for the repair of bone defects. Being an important precursor of the mineralized matrix of bone tissue, octacalcium phosphate (OCP) has been considered a promising bone substitute. However, its application is largely limited due to the thermodynamical instability and poor processability of it. In this study, OCP was prepared by co-precipitation in the presence of small amount of silk fibroin (SF), which regulated the crystallization of OCP and led to the formation of SF-OCP complex. The diameters of OCP crystals in OCP, 0.1SF-OCP, 0.3SF-OCP and 1SF-OCP complexes were 489.0 ±â€¯399.1 nm, 102.2 ±â€¯50.7 nm, 94.7 ±â€¯48.4 nm and 223.7 ±â€¯167.6 nm, respectively. However, the shape of OCP crystals did not apparently change by the presence of SF. Further, porous SF/OCP composite scaffolds with pore size of 111.9 ±â€¯33.1 µm were prepared, in which small crystals of SF-OCP complex were embedded in a SF matrix. MC3T3-E1 cells could attach and proliferate well on both the rugged surfaces and the pores of SF/OCP scaffolds, indicating their decent biocompatibility. Further, SF/OCP scaffolds markedly promoted bone regeneration in a rat calvarial critical-sized defect model. Both micro-CT and H&E characterizations showed that bone formation not only occurred around the scaffolds, but also penetrated into their center. Therefore, such SF/OCP composite scaffolds may have potential applications in bone tissue engineering.


Assuntos
Fosfatos de Cálcio/química , Fibroínas/química , Seda/química , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Engenharia Tecidual/métodos
18.
Bioanalysis ; 9(23): 1873-1881, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29171771

RESUMO

AIM: To develop and validate an inductively coupled plasma-mass spectrometry method for quantitative bioanalysis of aluminum (Al) in monkey serum in support of a GLP TOX study with alhydrogel-formulated drug candidate. METHODS & RESULTS: The method was linear over a dynamic range of 10-1000 ng/ml using a 50-µl sample volume. The intra-/inter-run precision (%CV) of the quality control sample results were ≤7.9% (CV) and the accuracy (%bias) within ±11.0% across all quality control concentrations evaluated. Other validation parameters, including stability under various conditions, extraction recovery and matrix effect, all met the acceptance criteria. CONCLUSION: The validated method was successfully implemented for the quantitative analysis of Al in monkey serum to assess the systemic exposure to Al.


Assuntos
Hidróxido de Alumínio/química , Alumínio/sangue , Espectrometria de Massas/métodos , Alumínio/normas , Animais , Composição de Medicamentos , Haplorrinos , Limite de Detecção , Espectrometria de Massas/normas , Controle de Qualidade , Reprodutibilidade dos Testes
19.
Anal Bioanal Chem ; 407(9): 2433-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25651903

RESUMO

Various endogenous and exogenous agents drive the un-directed formation of covalent bonds between proteins and DNA. These complex molecules are of great biological relevance, as can derive in mutations, but are difficult to study because of their heterogeneous chemical properties. New analytical approaches with sufficient detection capabilities to detect and quantify these compounds can help to standardize study models based on synthesized standards. The use of atomic spectrometry can provide quantitative information on the DNA-protein cross-link reaction yield along with basic stoichiometry of the products, based on internal elemental tags, sulfur from Cys and Met amino acids, and phosphorus from the DNA. A new instrumental approach to remove isobaric and polyatomic interferences from (31)P(+) and (32)S(+) was developed recently, with state-of-the-art for interference removal that captures (31)P(+) in Q1; it reacts with O2 in an octopole collision-reaction cell generating (47)PO(+), therefore allowing detection in Q3 without (31)NOH(+)/(48)Ca/(47)Ti interferences. Similarly, (32)S(+) is reacted to (48)SO(+), eliminating the polyatomic interferences at m/z = 32. In conjunction with the high resolving power of high-performance liquid chromatography (HPLC), this newer technology was applied by to the product purification of a DNA-protein cross link model and some preliminary structural studies.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , DNA/química , Fósforo/análise , Proteínas/química , Enxofre/análise , Espectrometria de Massas em Tandem/métodos , DNA/síntese química , Estrutura Molecular
20.
Small ; 8(24): 3816-22, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22903778

RESUMO

A versatile system combining chemotherapy with photothermal therapy for cancer cells using Pd nanosheet-covered hollow mesoporous silica nanoparticles is reported. While the hollow mesoporous silica core can be used to load anticancer drugs (i.e., doxorubicin) for chemotherapy, the Pd nanosheets on the surface of particles can convert NIR light into heat for photothermal therapy. More importantly, the loading of Pd nanosheets on hollow mesoporous silica nanospheres can dramatically increase the amount of cellular internalization of the Pd nanosheets: almost 11 times higher than the unloaded Pd nanosheets. The as-prepared nanocomposites efficiently deliver both drugs and heat to cancer cells to improve the therapeutic efficiency with minimal side effects. Compared with chemotherapy or photothermal therapy alone, the combination of chemotherapy and phototherapy can significantly improve the therapeutic efficacy, exhibiting a synergistic effect.


Assuntos
Sistemas de Liberação de Medicamentos , Nanoconchas , Neoplasias/terapia , Paládio , Dióxido de Silício , Antineoplásicos/administração & dosagem , Terapia Combinada , Doxorrubicina/administração & dosagem , Células Hep G2 , Temperatura Alta/uso terapêutico , Humanos , Nanocompostos/administração & dosagem , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanoconchas/administração & dosagem , Nanoconchas/química , Nanoconchas/ultraestrutura , Nanotecnologia , Fototerapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...