Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 41(1): 67, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180863

RESUMO

BACKGROUND: Epidemiological studies have confirmed that abnormal circadian rhythms are associated with tumorigenesis in breast cancer. However, few studies have investigated the pathological roles of rhythm genes in breast cancer progression. In this study, we aimed to evaluate the aberrant expression of 32 rhythm genes in breast cancer and detect the pathological roles and molecular mechanisms of the altered rhythm gene in regulating the progression of triple negative breast cancer (TNBC). METHODS: The aberrant expression of rhythm genes in breast cancer was screened by searching the GEPIA database and validated by using qRT-PCR and immunohistochemistry staining. Bioinformatics analysis combined with luciferase reporter experiment and chromatinimmunopercitation (ChIP) were used to investigate the molecular mechanism about aberrant expression of identified rhythm gene in breast cancer. The pathological roles of identified rhythm gene in TNBC progression was evaluated by colony formation assay, wound healing experiment, transwell assay, subcutaneous tumor formation and the mouse tail vein injection model through gain-of-function and loss-of-function strategies respectively. mRNA array, bioinformatics analysis, luciferase reporter experiment, ChIP and immunoflurescence assay were employed to investigate the key molecules and signaling pathways by which the identified rhythm gene regulating TNBC progression. RESULTS: We identified that nuclear factor interleukin 3 regulated (NFIL3) expression is significantly altered in TNBC compared with both normal breast tissues and other subtypes of breast cancer. We found that NFIL3 inhibits its own transcription, and thus, downregulated NFIL3 mRNA indicates high expression of NFIL3 protein in breast cancer. We demonstrated that NFIL3 promotes the proliferation and metastasis of TNBC cells in vitro and in vivo, and higher expression of NFIL3 is associated with poor prognosis of patients with TNBC. We further demonstrated that NFIL3 enhances the activity of NF-κB signaling. Mechanistically, we revealed that NFIL3 directly suppresses the transcription of NFKBIA, which blocks the activation of NF-κB and inhibits the progression of TNBC cells in vitro and in vivo. Moreover, we showed that enhancing NF-κB activity by repressing NFKBIA largely mimics the oncogenic effect of NFIL3 in TNBC, and anti-inflammatory strategies targeting NF-κB activity block the oncogenic roles of NFIL3 in TNBC. CONCLUSION: NFIL3 promotes the progression of TNBC by suppressing NFKBIA transcription and then enhancing NF-κB signaling-mediated cancer-associated inflammation. This study may provide a new target for TNBC prevention and therapy.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Inibidor de NF-kappaB alfa/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Transdução de Sinais
2.
Biomed Res Int ; 2020: 8916729, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851091

RESUMO

AURKA, a cell cycle-regulated kinase, is associated with malignant transformation and progression in many cancer types. We analyzed the expression change of AURKA in pan-cancer and its effect on the prognosis of cancer patients using the TCGA dataset. We revealed that AURKA was extensively elevated and predicted a poor prognosis in most of the detected cancer types, with an exception in colon cancer. AURKA was elevated in colon cancer, but the upregulation of AURKA indicated better outcomes of colon cancer patients. Then we revealed that undermethylation of the AURKA gene and several transcription factors contributed to the upregulation of AURKA in colon cancer. Moreover, we demonstrated that AURKA overexpression promoted the death of colon cancer cells induced by Oxaliplatin, whereas knockdown of AURKA significantly weakened the chemosensitivity of colon cancer cells to Oxaliplatin. Mechanistically, AURKA inhibited DNA damage response by suppressing the expression of various DNA damage repair genes in a TP53-dependent manner, which can partly explain that ARUKA is associated with a beneficial outcome of colon cancer. This study provided a possibility to use AURKA as a biomarker to predict the chemosensitivity of colon cancer to platinum in the clinic.


Assuntos
Aurora Quinase A/genética , Neoplasias do Colo/tratamento farmacológico , Oxaliplatina/farmacologia , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Camundongos , Oxaliplatina/efeitos adversos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Med ; 9(5): 1818-1829, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31927791

RESUMO

Although emerging studies showed that certain rhythm genes regulate cancer progression, the expression and roles of the vast majority of rhythm genes in human cancer are largely unknown, and the hallmarks of cancer regulated by rhythm genes have not been detected. In this study, we detected the expression changes of rhythm genes in pan-cancer and found that almost all rhythm genes mutated in all cancer types, and their expression level was significantly altered partially due to abnormal methylation, and several rhythm genes regulate the expression of other rhythm genes in various cancer types. Furthermore, we revealed that rhythm genes are significantly enriched in genome instability and the expression of certain rhythm genes is correlated with the tumor mutation burden, microsatellite instability, and the expression of DNA damage repair genes in most of the detected cancer types. Moreover, rhythm genes are associated with the infiltration of immune cells and the efficiency of immune blockade therapy. This study provides a comprehensive understanding of the roles of rhythm genes in cancer immunity, which may provide a novel method for the diagnosis and treatment of cancer.


Assuntos
Biomarcadores Tumorais/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Instabilidade Genômica/imunologia , Neoplasias/imunologia , Biologia Computacional , Dano ao DNA/imunologia , Metilação de DNA , Reparo do DNA/imunologia , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Instabilidade de Microssatélites , Invasividade Neoplásica/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia
4.
Int J Biol Sci ; 15(9): 1933-1941, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523194

RESUMO

The prognostic value of programmed death-ligand 1 (PD-L1) has been controversial in recent studies. PD-L1 is known to play a major role in suppressing the immune response, yet increasing studies have reported that PD-L1 expression has a favorable prognostic value for cancer patients. This raises the concern about how to understand PD-L1 expression: merely an immune inhibitory signal, or more likely a reactive process to T-cell response that indicates cytotoxic T lymphocyte (CTL) level in a tumor? To solve this dilemma, an integrative investigation is required. We compared the PD-L1 expression between tumor cells and immune cells, and characterized the inter- and intra-tumor correlation between CTL and PD-L1 expression. The prognostic values between PD-L1 and CTL is compared across 15 solid cancers and 11 independent cohorts of ovarian cancer. PD-L1 and PD-L1-adjusted CTL are analyzed in immunotherapy dataset receiving nivolumab. We observed unexpected high concordance between the prognostic value of PD-L1 and CTL across different cancers and cohorts. We found primarily reactive rather than constitutive PD-L1 expression in most tumors. We revealed that PD-L1-adjusted CTL level, rather than the expression of PD-L1, effectively predicts the responders to immune checkpoint inhibitors. This study highlights the importance of PD-L1 expression, as primarily a signature of reacting efficiency of pre-existing anti-tumor immunity, in balancing the tumor microenvironment. Importantly, it suggests that the reactive efficiency of PD-L1 is more useful to predict the response to immunotherapy.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Ovarianas/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Imunoterapia , Técnicas In Vitro , Linfócitos T Citotóxicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...