Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Inform ; 154: 104652, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718897

RESUMO

OBJECTIVES: Ischemic heart disease (IHD) is a significant contributor to global mortality and disability, imposing a substantial social and economic burden on individuals and healthcare systems. To enhance the efficient allocation of medical resources and ultimately benefit a larger population, accurate prediction of healthcare costs is crucial. METHODS: We developed an interpretable IHD hospitalization cost prediction model that integrates network analysis with machine learning. Specifically, our network-enhanced model extracts explainable features by leveraging a diagnosis-procedure concurrence network and advanced graph kernel techniques, facilitating the capture of intricate relationships between medical codes. RESULTS: The proposed model achieved an R2 of 0.804 ± 0.008 and a root mean square error (RMSE) of 17,076 ± 420 CNY on the temporal validation dataset, demonstrating comparable performance to the model employing less interpretable code embedding features (R2: 0.800 ± 0.008; RMSE: 17,279 ± 437 CNY) and the hybrid graph isomorphism network (R2: 0.802 ± 0.007; RMSE: 17,249 ± 387 CNY). The interpretation of the network-enhanced model assisted in pinpointing specific diagnoses and procedures associated with higher hospitalization costs, including acute kidney injury, permanent atrial fibrillation, intra-aortic balloon bump, and temporary pacemaker placement, among others. CONCLUSION: Our analysis results demonstrate that the proposed model strikes a balance between predictive accuracy and interpretability. It aids in identifying specific diagnoses and procedures associated with higher hospitalization costs, underscoring its potential to support intelligent management of IHD.


Assuntos
Hospitalização , Isquemia Miocárdica , Humanos , Isquemia Miocárdica/diagnóstico , Hospitalização/economia , Aprendizado de Máquina , Algoritmos , Custos de Cuidados de Saúde/estatística & dados numéricos , Redes Neurais de Computação
2.
J Biomed Inform ; 113: 103653, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338667

RESUMO

Acute kidney injury (AKI) is a common clinical condition with high mortality and resource consumption. Early identification of high-risk patients to achieve an appropriate allocation of limited clinical resources and timely interventions is of significant importance, which has attracted substantial research to develop prediction models for AKI risk stratification. However, most available AKI prediction models have moderate performance and lack of interpretability, which limits their applicability in supporting care intervention. In this paper, a machine learning-based framework for AKI prediction and interpretation in critical care is presented. First, an ensemble model is developed to predict a patient's risk of AKI within 72 h of admission to the intensive care units. Next, the model is interpreted both globally and locally. For the global interpretation, the important predictors are pinpointed and the detailed relationships between AKI risk and these predictors are illustrated. For the local interpretation, patient-specific analysis is presented to provide a visualized explanation for each individual prediction. Experimental results show that such a prediction and interpretation framework can lead to good prediction and interpretation performance, which has the potential to provide effective clinical decision support.


Assuntos
Injúria Renal Aguda , Injúria Renal Aguda/diagnóstico , Cuidados Críticos , Hospitalização , Humanos , Unidades de Terapia Intensiva , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...