Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(17): 19418-19427, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708200

RESUMO

Clean fracturing fluids are environmentally friendly and could have broad applications in permeability enhancement of coal seams. The hydrophobic chain length of the viscoelastic surfactant (VES) and the mixing of VESs with different ionic types have marked effects on the performance of clean fracturing fluids. This paper analyzes the effects of the hydrocarbon chain length of VES and mixing of VESs with different ion types on the pores of coal and discusses the mechanisms controlling the pore changes from a physical and chemical perspective. We found that the coal samples treated with clean fracturing fluid B had the largest porosity change. Adding two methylene groups to the hydrocarbon chain of the cationic VES will increase clay swelling in coal treated with fracturing fluids. Adding 0.1 wt % cocoamidopropyl betaine (zwitterionic VES) to cationic VES fracturing fluids can reduce the extent of clay expansion induced by fracturing fluids. VES with a long hydrocarbon chain has a strong ability to remove kaolinite in hard coal, and the addition of zwitterion VES increases the ability of a clean fracturing fluid to remove kaolinite. These results provide theoretical guidance for the synthesis of new VES molecules and the design of new fracturing fluid formulations.

2.
Ecotoxicol Environ Saf ; 208: 111734, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396063

RESUMO

Hexavalent chromium [Cr(VI)] has strong mobility and it can enter into deep regions of soil. Cr(VI)-contaminated soil remediation is the process of removing Cr(VI) present in deep soils and any residual Cr(VI). In this study, the Cr(VI)-contaminated soil in Chongqing was investigated, and the remediation and economic feasibility of chemical leaching and reduction combined with a soil repairing approach was explored. The results showed that the leaching reagent, liquid-solid ratio, leaching time, reduction agent dosage, reduction temperature and reduction time had significant (P < 0.05) effects on the remediation of Cr(VI). At 0.02 mol/L oxalic acid and citric acid using a liquid-solid ratio of 5:1 and leaching time of 45 min, the removal rate of Cr(VI) was 62.7%, the residual Cr(VI) in soil was 126 mg/kg, and the soil pH was 4.09 after leaching. Between 25 and 90 °C, and at a molar ratio of 25:1 of FeSO4•7 H2O to Cr(VI), the reduction rate of Cr(VI) in soil after reduction was 54.0-98.4%, and the leaching concentration of Cr(VI) in soil was 0.01-0.29 mg/L. The optimal reduction was at 90 °C for 60 min, resulting in only 2.7 mg/kg of residual Cr(VI) in soil. The cost of this technology to treat the area studied was 826 ¥/ton of soil, which represents an economically feasible method for Cr(VI)-contaminated soil remediation.


Assuntos
Cromo/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Ácido Cítrico , Poluição Ambiental , Ácido Oxálico , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...