Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(48): 31186-31191, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36349016

RESUMO

Herein, we report a highly selective fluorescent probe for the detection of Cu(ii). The detection mechanism relies on the Cu(ii)-catalyzed oxidative hydroxylation of 2-(aminocarbonyl)phenylboronic acid into salicylamide, thus recovering the excited-state intramolecular proton transfer (ESIPT) effect and inducing more than 35-fold fluorescence enhancement. The simple structure and readily available fluorescent probe give a novel method for quantitatively detecting Cu(ii) in the linear range of 0-22 µM, with a limit of detection down to 68 nM, and exhibiting high selectivity for Cu(ii) over 16 other metal ions.

2.
Materials (Basel) ; 12(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861076

RESUMO

This paper addresses the effects of Ce-rich mischmetal on the microstructure evolution of a 5182 aluminum alloy during annealing and rolling processes. The Ce-rich mischmetal was added to an as-cast 5182 aluminum alloy in an induction furnace, and this was followed by homogenized annealing at 450 °C for 24 h and a rolling operation. The microstructure evolution and mechanical properties' analysis of the 5182 Al alloy were characterized. The results show that the Ce-rich mischmetal could modify the microstructure, refine the α-Al grains, break the network distribution of Mg2Si phases, and prevent Cr and Si atoms from diffusing into the Al6(Mn, Fe) phase in the as-cast 5182 Al alloys. Ce-rich mischmetal elements were also found to refine the Al6(Mn, Fe) phase after cold rolling. Then, the refined Al6(Mn, Fe) particles inhibited the growth of recrystallization grains to refine them from 10.01 to 7.18 µm after cold rolling. Consequently, the tensile strength of the cold-rolled 5182 Al alloy increased from 414.65 to 454.34 MPa through cell-size strengthening, dislocation density strengthening, and particle strengthening. The tensile strength of the recrystallization annealed 5182 Al alloy was increased from 322.16 to 342.73 MPa through grain refinement strengthening, and this alloy was more stable after the recrystallization annealing temperature.

3.
Materials (Basel) ; 12(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067798

RESUMO

The influences of process annealing temperature during cold rolling on microstructure and mechanical properties of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe near ß high strength titanium alloy sheets have been investigated. Results showed that the alloy mainly included the deformation induced dislocation structures after cold rolling but no obvious band structure, twin crystal or martensite were observed in this work. The texture components, which were affected by process annealing, are mainly γ-fiber, α-fiber and weak Goss texture. The γ-fiber of alloy when process annealed at 780 °C (α/ß phase field) is stronger than at 830 °C (ß phase field), where the Goss texture of alloy with process annealing temperature of 830 °C is more obvious. Results of annealing heat treatments showed that the recrystallization of the cold rolled was basically completed in a relatively short time of 2 min at 750 °C for 2 min. The refinement of grain size led to a significant increase of plasticity compared to rolled alloy. Results of tensile testing of aged alloy display the excellent combination of strength and plasticity, and the cold rolled alloy with process annealed at α/ß phase field exhibits the better mechanical properties than at ß phase field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA