Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Med Imaging Graph ; 89: 101887, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33711732

RESUMO

Registration of hepatic dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) is an important task for evaluation of transarterial chemoembolization (TACE) or radiofrequency ablation by quantifying enhancing viable residue tumor against necrosis. However, intensity changes due to contrast agents combined with spatial deformations render technical challenges for accurate registration of DCE-MRI, and traditional deformable registration methods using mutual information are often computationally intensive in order to tolerate such intensity enhancement and shape deformation variability. To address this problem, we propose a cascade network framework composed of a de-enhancement network (DE-Net) and a registration network (Reg-Net) to first remove contrast enhancement effects and then register the liver images in different phases. In experiments, we used DCE-MRI series of 97 patients from Renji Hospital of Shanghai Jiaotong University and registered the arterial phase and the portal venous phase images onto the pre-contrast phases. The performance of the cascade network framework was compared with that of the traditional registration method SyN in the ANTs toolkit and Reg-Net without DE-Net. The results showed that the proposed method achieved comparable registration performance with SyN but significantly improved the efficiency.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Algoritmos , China , Meios de Contraste , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética
2.
Cell Physiol Biochem ; 33(1): 97-106, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24480980

RESUMO

BACKGROUND & AIMS: MicroRNAs (miRNAs) have been shown to play essential roles in HSCs activation which contributes to hepatic fibrosis. Our previous miRNA microarray results suggested that miR-126 might be decreased during HSCs activation as other studies. The aim of this study is to investigate the role of miR-126 during HSCs activation. METHODS: In this study, the expression of miR-126 during HSCs activation was measured and confirmed by qRT-PCR. Then, miR-126 expression was restored by transfection of lentivirus vector encoding miR-126. Futhermore, cell proliferation was assayed by the cell counting kit-8 (CCK-8), cell migration was assayed by transwell assay, and the markers of activation of HSCs, α-SMA and collagen type I, were assayed by qRT-PCR, Western Blotting, Immunostaining and ELISA. Luciferase reporter assay was used to find the target of miR-126, and Western Blotting and Immunostaining was used to validate the target of miR-126. Then, the expression and the role of the target of miR-126 during HSCs activation was further assessed. RESULTS: The expression of miR-126 was confirmed to be significantly decreased during HSCs activation. Overexpression of miR-126 significantly inhibited HSCs migration but did not affect HSCs proliferation. The expression of α-SMA and collagen type I were both obviously decreased by miR-126 restoration. CRK was found to be the target of miR-126 and overexpression of miR-126 significantly inhibited CRK expression. And it was found that overexpression of CRK also significantly decreased miR-126 expression and promoted HSCs activation. CONCLUSIONS: Our study showed that overexpression of miR-126 significantly inhibited the activation and migration of HSCs through targeting CRK which can also decrease miR-126 expression and promote HSCs activation.


Assuntos
Movimento Celular , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células , Colágeno Tipo I/metabolismo , Regulação da Expressão Gênica , Masculino , MicroRNAs/genética , Dados de Sequência Molecular , Ratos Sprague-Dawley
3.
Sensors (Basel) ; 11(7): 7162-77, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164009

RESUMO

The problem to be addressed in this paper is a phase-modulated waveform design for the detection of extended targets contaminated by signal-dependent noise (clutter) and additive noise in practical radar systems. An optimal waveform design method that leads to the energy spectral density (ESD) of signal under the maximum signal-to-clutter-and-noise ratio (SCNR) criterion is introduced first. In order to make full use of the transmission power, a novel phase-iterative algorithm is then proposed for designing the phase-modulated waveform with a constant envelope, whose ESD matches the optimal one. This method is proven to be able to achieve a small SCNR loss by minimizing the mean-square spectral distance between the optimal waveform and the designed waveform. The results of extensive simulations demonstrate that our approach provides less than 1 dB SCNR loss when the signal duration is greater than 1 µs, and outperforms the stationary phase method and other phase-modulated waveform design methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...