Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12628, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135400

RESUMO

We report the generation of frequency-uncorrelated photon pairs from counter-propagating spontaneous parametric down-conversion in a periodically-poled KTP waveguide. The joint spectral intensity of photon pairs is characterized by measuring the corresponding stimulated process, namely, the difference frequency generation process. The experimental result shows a clear uncorrelated joint spectrum, where the backward-propagating photon has a narrow bandwidth of 7.46 GHz and the forward-propagating one has a bandwidth of 0.23 THz like the pump light. The heralded single-photon purity estimated through Schmidt decomposition is as high as 0.996, showing a perspective for ultra-purity and narrow-band single-photon generation. Such unique feature results from the backward-wave quasi-phase-matching condition and does not has a strict limitation on the material and working wavelength, thus fascinating its application in photonic quantum technologies.

2.
Phys Rev Lett ; 126(2): 020503, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512193

RESUMO

Entanglement distribution has been accomplished using a flying drone, and this mobile platform can be generalized for multiple mobile nodes with optical relay among them. Here we develop the first optical relay to reshape the wave front of photons for their low diffraction loss in free-space transmission. Using two drones, where one distributes the entangled photons and the other serves as relay node, we achieve entanglement distribution with Clauser-Horne-Shimony-Holt S parameter of 2.59±0.11 at 1 km distance. Key components for entangled source, tracking, and relay are developed with high performance and are lightweight, constructing a scalable airborne system for multinode connectio and toward mobile quantum networks.

3.
Natl Sci Rev ; 7(5): 921-928, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691535

RESUMO

Satellites have shown free-space quantum-communication ability; however, they are orbit-limited from full-time all-location coverage. Meanwhile, practical quantum networks require satellite constellations, which are complicated and expensive, whereas the airborne mobile quantum communication may be a practical alternative to offering full-time all-location multi-weather coverage in a cost-effective way. Here, we demonstrate the first mobile entanglement distribution based on drones, realizing multi-weather operation including daytime and rainy nights, with a Clauser-Horne-Shimony-Holt S-parameter measured to be 2.41 ± 0.14 and 2.49 ± 0.06, respectively. Such a system shows unparalleled mobility, flexibility and reconfigurability compared to the existing satellite and fiber-based quantum communication, and reveals its potential to establish a multinode quantum network, with a scalable design using symmetrical lens diameter and single-mode-fiber coupling. All key technologies have been developed to pack quantum nodes into lightweight mobile platforms for local-area coverage, and arouse further technical improvements to establish wide-area quantum networks with high-altitude mobile communication.

4.
Opt Lett ; 44(22): 5598-5601, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730116

RESUMO

We present an experimental realization of a compact and reliable way to build a nondegenerate polarization-entangled photon-pair source based on a dual-periodically-poled $ {\rm Ti}:{{\rm LiNbO}_3} $Ti:LiNbO3 waveguide, which is in the telecommunication window and compatible with the fiber quantum networks. The dual-periodic structure allows two inherently concurrent quasiphase-matching spontaneous parametric down-conversion processes pumped by a single laser beam, hence enabling our source to be compact and stable. We show that our source has a high brightness of $ B = 1.22{\rm } \times {\rm }{10^7}\;{\rm pairs}/(\rm s \times mW \times nm) $B=1.22×107pairs/(s×mW×nm). With quantum state tomography, we estimate an entanglement fidelity of $ 0.945 \pm 0.003 $0.945±0.003. A violation of Clauser-Horne-Shimony-Holt inequality with $ S = 2.75 \pm 0.03 $S=2.75±0.03 is also demonstrated.

5.
Opt Lett ; 44(2): 239-242, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644870

RESUMO

Multipartite quantum entanglement is a powerful resource for enriching the functionality of quantum computation and quantum communication. In this Letter, we propose a new method to generate a two-photon multipath Dicke state with concurrent spontaneous parametric downconversion processes from a single periodically poled nonlinear photonic crystal. We design the poling structure to produce a three-path Dicke state where three quasi-phase-matching conditions are fulfilled simultaneously by a hybrid one- and two-dimensionally poled nonlinear photonic crystal. We use genuine multipartite entanglement concurrence to quantify the entanglement of the Dicke state. Using a more complicated poling configuration like multiple-periodically poled two-dimensional nonlinear photonic crystal, we can also produce four-path, five-path, or multipath Dicke states by a single crystal. The multiple-periodically poled two-dimensional nonlinear photonic crystal provides a new method, to the best of our knowledge, for the integrated generation of multipartite quantum light sources.

6.
Opt Express ; 24(25): 28519-28528, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958496

RESUMO

We realized a polarization-independent split-ratio-tunable optical beam splitter supporting two input and output ports through a stable interferometer. By adjusting the angle of a half-wave plate in the interferometer, we can tune the beam splitter reflectivities for both input ports from 0 to 1, regardless of the input light polarization. High-fidelity polarization-preserving transmission from input to output ports was verified by complete quantum process tomography. Nearly optimal interference effects at the beam splitter with various split ratios were observed by two-photon Hong-Ou-Mandel interference for different input polarization states. Such a beam splitter could find a variety of applications in classical and quantum optical technologies.

7.
Opt Express ; 24(6): 6402-12, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136831

RESUMO

We propose to generate a single-mode-squeezing two-mode squeezed vacuum state via a single χ(2) nonlinear photonic crystal. The state is favorable for existing Gaussian entanglement distillation schemes, since local squeezing operations can enhance the final entanglement and the success probability. The crystal is designed for enabling three concurrent quasi-phase-matching parametric-down conversions, and hence relieves the auxiliary on-line bi-side local squeezing operations. The compact source opens up a way for continuous-variable quantum technologies and could find more potential applications in future large-scale quantum networks.

8.
Opt Lett ; 34(9): 1297-9, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19412251

RESUMO

When photons are indistinguishably in the same temporal mode, their detection probability is greatly enhanced due to constructive multiphoton interference, as compared to the case when they are distinguishable. We observed for what is believed to be the first time such a photon bunching effect for six photons. The observed enhancement factor in six-photon coincidence measurement is 17+/-2, which is close to a factor of 20 for an ideal case. Our result confirms that the six photons that we obtain have a high degree of indistinguishability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...