Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Bioorg Chem ; 148: 107459, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761707

RESUMO

Lung cancer is a malignant tumor with high mortality and drug resistance. Therefore, it is urgent to explore natural and nontoxic drugs to treat lung cancer. In this study, the natural active ingredient AANL extracted from Agrocybe aegirita was used to modify nanoselenium by an oxidation-reduction method. Transmission electron microscope detection and infrared spectroscopy showed that a novel selenium nanocomposite named AANL-SeNPs was successfully prepared. The results of nanoscale characterization showed that AANL-SeNPs had good stability and uniform dispersion in aqueous solution by zeta potential and spectrum analysis. At the cellular level, we found that AANL-SeNPs significantly inhibited the cell viability of lung cancer cells, and the cell inhibition rate of 60 nM AANL-SeNPs was 39 % in H157 cells, 67 % in H147 cells, and 62 % in A549 cells. The IC50 value of AANL-SeNPs was 51.85 nM in A549 cells and 81.57 nM in H157 cells. Moreover, AANL-SeNPs could inhibit the cell proliferation and migration, and enhance the sensitivity of lung cancer cells to osimertinib and has no toxic to normal cells. In vivo, AANL-SeNPs significantly slowed tumor growth in tumor-bearing mice by establishing a subcutaneous transplantation tumor model for lung cancer, and the tumor size was smaller and was reduced about 79 % in 2 mg/kg AANL-SeNPs group compared with PBS group. Mechanistically, a total of 38 differentially expressed proteins were identified by data-independent acquisition mass spectrometry. A significantly upregulated protein, CDC-like kinase 2 (CLK2), was screened and validated for further analysis, which showed that the expression levels of CLK2 were increased in H157 and H1437 cells after AANL-SeNPs treatment. The results obtained in this study suggest that a novel selenium nanocomposite AANL-SeNPs, which inhibits lung cancer by upregulating the expression of CLK2.


Assuntos
Antineoplásicos , Proliferação de Células , Neoplasias Pulmonares , Nanocompostos , Proteínas Tirosina Quinases , Selênio , Regulação para Cima , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Nanocompostos/química , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Animais , Selênio/química , Selênio/farmacologia , Camundongos , Regulação para Cima/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Camundongos Nus
2.
BMC Genomics ; 25(1): 35, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183039

RESUMO

BACKGROUND: Macrobrachium nipponense is a freshwater prawn of economic importance in China. Its reproductive molt is crucial for seedling rearing and directly impacts the industry's economic efficiency. 20-hydroxyecdysone (20E) controls various physiological behaviors in crustaceans, among which is the initiation of molt. Previous studies have shown that 20E plays a vital role in regulating molt and oviposition in M. nipponense. However, research on the molecular mechanisms underlying the reproductive molt and role of 20E in M. nipponense is still limited. RESULTS: A total of 240.24 Gb of data was obtained from 18 tissue samples by transcriptome sequencing, with > 6 Gb of clean reads per sample. The efficiency of comparison with the reference transcriptome ranged from 87.05 to 92.48%. A total of 2532 differentially expressed genes (DEGs) were identified. Eighty-seven DEGs associated with molt or 20E were screened in the transcriptomes of the different tissues sampled in both the experimental and control groups. The reliability of the RNA sequencing data was confirmed using Quantitative Real-Time PCR. The expression levels of the eight strong candidate genes showed significant variation at the different stages of molt. CONCLUSION: This study established the first transcriptome library for the different tissues of M. nipponense in response to 20E and demonstrated the dominant role of 20E in the molting process of this species. The discovery of a large number of 20E-regulated strong candidate DEGs further confirms the extensive regulatory role of 20E and provides a foundation for the deeper understanding of its molecular regulatory mechanisms.


Assuntos
Palaemonidae , Transcriptoma , Feminino , Animais , Ecdisterona/farmacologia , Palaemonidae/genética , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica
3.
Exp Neurol ; 371: 114586, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898396

RESUMO

Hydrogen sulfide (H2S), an endogenous gasotransmitter, exhibits the anxiolytic roles through its anti-inflammatory effects, although its underlying mechanisms remain largely elusive. Emerging evidence has documented that cell cycle checkpoint kinase 1 (Chk1)-regulated DNA damage plays an important role in the neurodegenerative diseases; however, there are few relevant reports on the research of Chk1 in neuropsychiatric diseases. Here, we aimed to investigate the regulatory role of H2S on Chk1 in lipopolysaccharide (LPS)-induced anxiety-like behavior focusing on inflammasome activation in the hippocampus. Cystathionine γ-lyase (CSE, a H2S-producing enzyme) knockout (CSE-/-) mice displayed anxiety-like behavior and activation of inflammasome-mediated inflammatory responses, manifesting by the increase levels of interleukin-1ß (IL-1ß), IL-6, and ionized calcium-binding adaptor molecule-1 (Iba-1, microglia marker) expression in the hippocampus. Importantly, expression of p-Chk1 and γ-H2AX (DNA damage marker) levels were also increased in the hippocampus of CSE-/- mice. LPS treatment decreased the expression of CSE and CBS while increased p-Chk1 and γ-H2AX levels and inflammasome-activated neuroinflammation in the hippocampus of mice. Moreover, p-Chk1 and γ-H2AX protein levels and cellular immunoactivity were significantly increased while CSE and CBS were markedly decreased in cultured BV2 cells followed by LPS treatment. Treatment of mice with GYY4137, a donor of H2S, inhibited LPS-induced increased in p-Chk1 and γ-H2AX levels, mitigated inflammasome activation and inflammatory responses as well as amelioration of anxiety-like behavior. Notably, SB-218078, a selective Chk1 inhibitor treatment attenuated the effect of LPS on inflammasome activation and inflammatory responses and the induction of anxiety-like behavior. Finally, STAT3 knockdown with AAV-STAT3 shRNA alleviated LPS-induced anxiety-like behavior and inhibited inflammasome activation in the hippocampus, and blockade of NLRP3 with MCC950 attenuated neuroinflammation induction and ameliorated LPS-induced anxiety-like behavior. Overall, this study indicates that downregulation of Chk1 activity by H2S activation may be considered as a valid strategy for preventing the progression of LPS-induced anxiety-like behavior.


Assuntos
Sulfeto de Hidrogênio , Camundongos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Sulfeto de Hidrogênio/metabolismo , Lipopolissacarídeos/toxicidade , Inflamassomos/metabolismo , Doenças Neuroinflamatórias , Quinase 1 do Ponto de Checagem/metabolismo , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Hipocampo/metabolismo
4.
Int J Biol Markers ; 38(3-4): 167-173, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37654207

RESUMO

BACKGROUND: The acid glycoprotein 1 (AGP1) is downregulated in lung cancer. However, the performance of AGP1 in distinguishing benign from malignant lung lesions is still unknown. METHODS: The expression of AGP1 in benign diseases and lung cancer samples was detected by Western blot. The receiver operating characteristic curves, bivariate correlation, and multivariate analysis was analyzed by SPSS software. RESULTS: AGP1 expression levels were significantly downregulated in lung cancer and correlated with carcinoembryonic antigen (CEA), CA199, and CA724 tumor biomarkers. The diagnostic performance of AGP1 for distinguishing malignant from benign pulmonary lesions was better than the other four clinical biomarkers including CEA, squamous cell carcinoma-associated antigen, neuron-specific enolase, and cytokeratin 19 fragment 21-1, with an area under the curve value of 0.713 at 88.8% sensitivity. Furthermore, the multivariate analysis indicated that the variates of thrombin time and potassium significantly affected the AGP1 levels in lung cancer. CONCLUSIONS: Our study indicates that AGP1 expression is decreased in lung cancer compared to benign samples, which helps distinguish benign and malignant pulmonary lesions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno Carcinoembrionário , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Pulmão/química , Pulmão/metabolismo , Pulmão/patologia , Antígenos de Neoplasias , Biomarcadores Tumorais/metabolismo , Glicoproteínas , Queratina-19
5.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762609

RESUMO

This study investigated the potential to use double-stranded RNA insulin-like androgenic gland hormone (dsIAG) to induce sex reversal in Macrobrachium nipponense and identified the molecular mechanisms underlying crustacean reproduction and sex differentiation. The study aimed to determine whether dsIAG could induce sex reversal in PL30-male M. nipponense during a critical period. The sex-related genes were selected by performing the gonadal transcriptome analysis of normal male (dsM), normal female (dsFM), neo-female sex-reversed individuals (dsRM), and unreversed males (dsNRM). After six injections, the experiment finally resulted in a 20% production of dsRM. Histologically, dsRM ovaries developed slower than dsFM, but dsNRM spermathecae developed normally. A total of 1718, 1069, and 255 differentially expressed genes were identified through transcriptome sequencing of the gonads in three comparison groups, revealing crucial genes related to reproduction and sex differentiation, such as GnRHR, VGR, SG, and LWS. Principal Component Analysis (PCA) also distinguished dsM and dsRM very well. In addition, this study predicted that the eyestalks and the "phototransduction-fly" photoperiodic pathways of M. nipponense could play an important role in sex reversal. The enrichment of related pathways and growth traits in dsNRM were combined to establish that IAG played a significant role in reproduction, growth regulation, and metabolism. Finally, complete sex reversal may depend on specific stimuli at critical periods. Overall, this study provides valuable findings for the IAG regulation of sex differentiation, reproduction, and growth of M. nipponense in establishing a monoculture.


Assuntos
Insulina , Palaemonidae , Humanos , Feminino , Masculino , Animais , Androgênios/farmacologia , Palaemonidae/genética , Diferenciação Sexual/genética , Insulina Regular Humana , Reprodução/genética
7.
Cell Mol Life Sci ; 80(8): 215, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468661

RESUMO

BACKGROUND: We have shown that Hippo-YAP signaling pathway plays an important role in endothelial cell differentiation. Vestigial-like family member 4 (VGLL4) has been identified as a YAP inhibitor. However, the exact function of VGLL4 in vascular endothelial cell development remains unclear. In this study, we investigated the role of VGLL4, in human endothelial lineage specification both in 3D vascular organoid and 2D endothelial cell differentiation. METHODS AND RESULTS: In this study, we found that VGLL4 was increased during 3D vascular organoids generation and directed differentiation of human embryonic stem cells H1 towards the endothelial lineage. Using inducible ectopic expression of VGLL4 based on the piggyBac system, we proved that overexpression of VGLL4 in H1 promoted vascular organoids generation and endothelial cells differentiation. In contrast, VGLL4 knockdown (heterozygous knockout) of H1 exhibited inhibitory effects. Using bioinformatics analysis and protein immunoprecipitation, we further found that VGLL4 binds to TEAD1 and facilitates the expression of endothelial master transcription factors, including FLI1, to promote endothelial lineage specification. Moreover, TEAD1 overexpression rescued VGLL4 knockdown-mediated negative effects. CONCLUSIONS: In summary, VGLL4 promotes EC lineage specification both in 3D vascular organoid and 2D EC differentiation from pluripotent stem cell, VGLL4 interacts with TEAD1 and facilitates EC key transcription factor, including FLI1, to enhance EC lineage specification.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes , Humanos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição de Domínio TEA
8.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446235

RESUMO

The relationship between molting and reproduction has received more attention in economically important crustacean decapods. Molting and reproduction are synergistic events in Macrobrachium nipponense, but the molecular regulatory mechanisms behind them are unclear. In the current study, we performed Illumina sequencing for the ovaries of M. nipponense during the molt cycle (pre-molting, Prm; mid-molting, Mm; and post-molting, Pom). A total of 66.57 Gb of transcriptome data were generated through sequencing, resulting in the identification of 105,149 unigenes whose alignment ratio with the reference genome exceeded 87.57%. Differentially expressed genes (DEGs) were annotated through the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases for gene classification and pathway analysis. A total of twenty-six molt-related DEGs were found, and their expression patterns were examined across various molting stages. The KEGG enrichment analysis revealed that the key pathways involved in regulating the molting process of M. nipponense primarily include the mTOR, insect hormone biosynthesis, TGF-beta, and Wnt signaling pathways. Our transcriptomic data suggest that these pathways crosstalk with each other to regulate the synthesis and degradation of ecdysone throughout the molt cycle. The current study has deepened our understanding of the molecular mechanisms of crustacean molting and will serve as a basis for future studies of crustaceans and other molting animals.


Assuntos
Palaemonidae , Animais , Feminino , Palaemonidae/genética , Muda/genética , Ovário/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Reprodução/genética
9.
Int J Oncol ; 63(2)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37417362

RESUMO

The pathogenesis mechanism of lung cancer is very complex, with high incidence and mortality. Serpin family A member 3 (SERPINA3) expression levels were reduced in the sera of patients with lung cancer and may be a candidate diagnostic and prognostic survival biomarker in lung cancer, as previously reported. However, the detailed biological functions of SERPINA3 in the pathogenesis of lung cancer remain unknown. In the present study, it was aimed to explore the effects of SERPINA3 on the occurrence of lung cancer. SERPINA3 expression was assessed using bioinformatics database analysis and experimental detection. Then, the biological effects of SERPINA3 were investigated in a cell culture system and a xenograft model of human lung cancer. The potential regulatory mechanism of SERPINA3 in lung cancer was explored by data­independent acquisition mass spectrometry (DIA­MS) detection and further validated by western blotting (WB). The results indicated that SERPINA3 expression levels were significantly downregulated in lung cancer tissues and cell lines. At the cellular level, it was revealed that overexpressed SERPINA3 inhibited cell growth, proliferation, migration and invasion and promoted the apoptosis of lung cancer cells. Moreover, overexpressed SERPINA3 enhanced the sensitivity of lung cancer cells to osimertinib. In vivo, a xenograft model of human lung cancer was established with BALB/c nude mice. After the injection of A549 cells, the tumor growth of the tumor­bearing mice in the SERPINA3­overexpressing group increased more slowly, and the tumor volume was smaller than that in the empty­vector group. Mechanistically, a total of 65 differentially expressed proteins were identified. It was found that the speckle­type POZ protein (SPOP) was significantly upregulated in SERPINA3­overexpressing H157 cells using DIA­MS detection and analysis. WB validation showed that SPOP expression increased, and NF­kappaB (NF­κB) p65 was inhibited in cell lines and tumor tissues of mice when SERPINA3 was overexpressed. The present findings suggest that SERPINA3 is involved in the development of lung cancer and has an antineoplastic role in lung cancer.


Assuntos
Neoplasias Pulmonares , Serpinas , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proliferação de Células , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Serpinas/genética , Serpinas/metabolismo
10.
Biotechnol Bioeng ; 120(10): 2777-2792, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37366272

RESUMO

Nanotechnology is one of the most promising and decisive technologies in the world. Nanomaterials, as the primary research aspect of nanotechnology, are quite different from macroscopic materials because of their unique optical, electrical, magnetic, thermal properties, and more robust mechanical properties, which make them play an essential role in the field of materials science, biomedical field, aerospace field, and environmental energy. Different preparation methods for nanomaterials have various physical and chemical properties and are widely used in different areas. In this review, we focused on the preparation methods, including chemical, physical, and biological methods due to the properties of nanomaterials. We mainly clarified the characteristics, advantages, and disadvantages of different preparation methods. Then, we focused on the applications of nanomaterials in biomedicine, including biological detection, tumor diagnosis, and disease treatment, which provide a development trend and promising prospects for nanomaterials.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Nanoestruturas/química , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/diagnóstico , Neoplasias/terapia
11.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239827

RESUMO

Sex reversal induced by 17ß-estradiol (E2) has shown the potential possibility for monoculture technology development. The present study aimed to determine whether dietary supplementation with different concentrations of E2 could induce sex reversal in M. nipponense, and select the sex-related genes by performing the gonadal transcriptome analysis of normal male (M), normal female (FM), sex-reversed male prawns (RM), and unreversed male prawns (NRM). Histology, transcriptome analysis, and qPCR were performed to compare differences in gonad development, key metabolic pathways, and genes. Compared with the control, after 40 days, feeding E2 with 200 mg/kg at PL25 (PL: post-larvae developmental stage) resulted in the highest sex ratio (female: male) of 2.22:1. Histological observations demonstrated the co-existence of testis and ovaries in the same prawn. Male prawns from the NRM group exhibited slower testis development without mature sperm. RNA sequencing revealed 3702 differentially expressed genes (DEGs) between M vs. FM, 3111 between M vs. RM, and 4978 between FM vs. NRM. Retinol metabolism and nucleotide excision repair pathways were identified as the key pathways for sex reversal and sperm maturation, respectively. Sperm gelatinase (SG) was not screened in M vs. NRM, corroborating the results of the slice D. In M vs. RM, reproduction-related genes such as cathepsin C (CatC), heat shock protein cognate (HSP), double-sex (Dsx), and gonadotropin-releasing hormone receptor (GnRH) were expressed differently from the other two groups, indicating that these are involved in the process of sex reversal. Exogenous E2 can induce sex reversal, providing valuable evidence for the establishment of monoculture in this species.


Assuntos
Palaemonidae , Animais , Masculino , Feminino , Palaemonidae/metabolismo , Sêmen , Perfilação da Expressão Gênica/métodos , Estradiol/farmacologia , Estradiol/metabolismo , Ovário/metabolismo , Transcriptoma
12.
Animals (Basel) ; 13(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37238135

RESUMO

Cyclin B3 (CycB3) is involved in the metabolic pathway of the cell cycle, playing essential roles in the regulation of cell proliferation and mitosis. CycB3 is also predicted to be involved in the reproduction of male oriental river prawns (Macrobrachium nipponense). In this study, the potential functions of CycB3 in M. nipponense were investigated using quantitative real-time PCR, RNA interference, and histological observations. The full-length DNA sequence of CycB3 in M. nipponense was 2147 base pairs (bp) long. An open reading frame of 1500 bp was found, encoding 499 amino acids. A highly conserved destruction box and two conserved cyclin motifs were found in the protein sequence of Mn-CycB3. Phylogenetic tree analysis revealed that this protein sequence was evolutionarily close to that of CycB3s of crustacean species. Quantitative real-time PCR analysis results suggested that CycB3 was involved in the process of spermiogenesis, oogenesis, and embryogenesis in M. nipponense. RNA interference analysis showed that CycB3 had a positive regulatory relationship with insulin-like androgenic gland hormone (IAG) in M. nipponense. In addition, sperm were rarely observed in the testis of double-stranded CycB3-injected prawns after 14 days of treatment, and sperm abundance was dramatically lower than that in the double-stranded GFP-injected prawns on the same day. This result indicated that CycB3 can regulate the testis reproduction in M. nipponense through inhibiting the IAG expressions. Overall, these results indicated that CycB3 plays essential roles in the regulation of male reproduction in M. nipponense, which may promote the studies of male reproduction in other crustacean species.

13.
Animals (Basel) ; 13(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37106932

RESUMO

The steroid 17α-methyltestosterone (MT) inhibits ovarian function and is often used to induce sex reversal artificially in vertebrates. In the present study, different concentrations of MT were added as dietary supplementation, and the effects on sex ratio, growth, and gonadal development were examined. After 40 days, the sex ratio (male:female) in each group increased at different degrees with 50 (1.36:1), 100 (1.57:1), and 200 (2.61:1) mg/kg MT, and neo-males with testis-ovary coexistence were observed in the 200 mg/kg MT group. Furthermore, 50 and 100 mg/kg MT could induce female reversion in neo-males. Histologically, the development of the testes in experimental groups was slower, but the ovaries of the experimental and control groups had similar developmental rates. The expression levels of DMRT11E, Foxl2, and SoxE1 in males at 200 mg/kg MT were 8.65-, 3.75-, and 3.45-fold greater than those of the control group. In crustaceans, sex reversal through vertebrate sex hormones can be observed. Neo-males (sex-reversed female prawns) were maintained by exogenous androgen, and over-reliance led to slow testis growth, small body size, and low growth rate, but sperm was still produced. In female prawns, MT inhibited ovary development and promoted growth.

14.
Mol Biol Rep ; 50(6): 5069-5080, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099233

RESUMO

BACKGROUND: Macrobrachium nipponense, is an important economic indigenous prawn and is widely distributed in China. However, most these genetic structure analysis researches were focused on a certain water area, systematic comparative studies on genetic structure of M. nipponense across China are not yet available. METHODS AND RESULTS: In this study, D-loop region sequences was used to investigate the genetic diversity and population structure of 22 wild populations of M. nipponense through China, containing the major rivers and lakes of China. Totally 473 valid D-loop sequences with a length of 1110 bp were obtained, and 348 variation sites and 221 haplotypes were detected. The haplotype diversity (h) was ranged from 0.1630 (Bayannur) ~ 1.0000 (Amur River) and the nucleotide diversity π value ranged from 0.001164 (Min River) ~ 0.037168 (Nen River). The pairwise genetic differentiation index (FST) ranged from 0.00344 to 0.91243 and most pair-wised FST was significant (P < 0.05). The lowest FST was displayed in Min River and Jialing River populations and the highest was between Nandu River and Nen River populations. The phylogenetic tree of genetic distance showed that all populations were divided into two branches. The Dianchi Lake, Nandu River, Jialing River and Min River populations were clustered into one branch. The neutral test and mismatch distribution results showed that M. nipponense populations were not experienced expanding and kept a steady increase. CONCLUSIONS: Taken together, a joint resources protection and management strategy for M. nipponense have been suggested based on the results of this study for its sustainable use.


Assuntos
Variação Genética , Palaemonidae , Animais , Variação Genética/genética , Filogenia , Palaemonidae/genética , China , Rios
15.
J Mol Cell Cardiol ; 176: 21-32, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657637

RESUMO

The Hippo signaling pathway plays a critical role in cardiovascular development and stem cell differentiation. Using microarray profiling, we found that the Hippo pathway components vestigial-like family member 4 (VGLL4) and TEA domain transcription factor 1 (TEAD1) were upregulated during vascular smooth muscle cell (VSMC) differentiation from H1 ESCs (H1 embryonic stem cells). To further explore the role and molecular mechanisms of VGLL4 in regulating VSMC differentiation, we generated a VGLL4-knockdown H1 ESC line (heterozygous knockout) using the CRISPR/Cas9 system and found that VGLL4 knockdown inhibited VSMC specification. In contrast, overexpression of VGLL4 using the PiggyBac transposon system facilitated VSMC differentiation. We confirmed that this effect was mediated via TEAD1 and VGLL4 interaction. In addition, bioinformatics analysis revealed that Ten-eleven-translocation 2 (TET2), a DNA dioxygenase, is a target of TEAD1, and a luciferase assay further verified that TET2 is the target of the VGLL4-TEAD1 complex. Indeed, TET2 overexpression promoted VSMC marker gene expression and countered the VGLL4 knockdown-mediated inhibitory effects on VSMC differentiation. In summary, we revealed a novel role of VGLL4 in promoting VSMC differentiation from hESCs and identified TET2 as a new target of the VGLL4-TEAD1 complex, which may demethylate VSMC marker genes and facilitate VSMC differentiation. This study provides new insights into the VGLL4-TEAD1-TET2 axis in VSMC differentiation and vascular development.


Assuntos
Dioxigenases , Células-Tronco Pluripotentes , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Domínio TEA , Músculo Liso Vascular/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes/metabolismo , Miócitos de Músculo Liso/metabolismo , Proliferação de Células
16.
Front Endocrinol (Lausanne) ; 13: 1084802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545330

RESUMO

Polo-like kinase 1 (Plk1) has multiple functions in the cell cycle, including in the maturation of centrosomes during the G2/M transition, the separation of centrosomes, and the activation of cyclin-dependent kinase 1 expression and spindle assembly. In this study, we investigated the potential regulatory roles of Plk1 in the reproductive development of the male oriental river prawn (Machrobrachium nipponense). The full cDNA sequence of Mn-Plk1 was 2360 base pairs long, with an open reading frame of 1836 base pairs encoding 611 amino acids. Protein sequence alignment identified a conserved serine/threonine kinase domain and two Polo-boxes. Phylogenetic tree analysis revealed that Mn-Plk1 had the closest evolutionary distance with Plk1s of freshwater prawns and then with those of crustacean species, whereas the evolutionary distance with mollusks was much more distant. Quantitative PCR analysis predicted that Mn-Plk1 plays essential roles in the regulation of gonad development. RNA interference analysis and histological observations showed that expression of insulin-like androgenic gland hormone decreased as the expression of Mn-Plk1 decreased, and fewer than 5% of cells were sperm cells at day 14 in the dsPlk1 injected prawns. This result indicated that Plk1 positively regulated testis development in M. nipponense by affecting the expression of this hormone. Our results highlight the functions of Plk1 in M. nipponense and provide valuable information that can be applied to establish artificial techniques to regulate testis development in this species.


Assuntos
Decápodes , Palaemonidae , Animais , Masculino , Interferência de RNA , Palaemonidae/genética , Palaemonidae/metabolismo , Filogenia , Sequência de Bases , Sêmen/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Decápodes/genética , Insulina/metabolismo , Quinase 1 Polo-Like
17.
Front Genet ; 13: 1053826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467995

RESUMO

Cyclin A (CycA) plays essential roles in regulating multiple steps of the cell cycle, and it affects gonad development in mammals and invertebrates. Previous RNA interference (RNAi) analysis revealed that knocking-down the expression of CycA in female oriental river prawns (Macrobrachium nipponense) inhibited ovarian development. CycA was also predicted to have regulatory roles in reproductive development of male M. nipponense based on significant changes of Mn-CycA expression after eyestalk ablation. The goal of this study was to investigate the potential functions of CycA in the reproductive development of male M. nipponense using RNAi and histological observations. Quantitative real-time PCR analysis revealed that both single-side and double-side eyestalk ablation stimulated the expressions of Mn-CycA, and the expression was higher in prawns with double-side eyestalk ablation (p < 0.05). Mn-CycA expression was significantly higher in the testis and androgenic gland during the reproductive season than during the non-reproductive season (p < 0.05). In the RNAi analysis, Mn-CycA expression significantly decreased after prawns were injected with dsCycA, and the expression of insulin-like androgenic gland hormone (Mn-IAG) also decreased as Mn-CycA expression decreased. This result indicated that CycA positively regulated the expression of IAG in M. nipponense. Histological observations revealed that the number of sperm decreased dramatically to <5% of the total cells in the testis of the dsCycA-treated group compared to that of control group on day 14, indicating that knockdown of Mn-CycA expression inhibited testis development by affecting the expression of Mn-IAG in M. nipponense. These results highlighted the functions of CycA in male reproductive development of M. nipponense, which can be applied to future studies of male reproduction in other crustacean species.

18.
Genes (Basel) ; 13(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36360319

RESUMO

Cyclin B (CycB) plays essential roles in cell proliferation and promotes gonad development in many crustaceans. The goal of this study was to investigate the regulatory roles of this gene in the reproductive development of male oriental river prawns (Macrobrachium nipponense). A phylo-genetic tree analysis revealed that the protein sequence of Mn-CycB was most closely related to those of freshwater prawns, whereas the evolutionary distance from crabs was much longer. A quantitative PCR analysis showed that the expression of Mn-CycB was highest in the gonad of both male and female prawns compared to that in other tissues (p < 0.05), indicating that this gene may play essential roles in the regulation of both testis and ovary development in M. nipponense. In males, Mn-CycB expression in the testis and androgenic gland was higher during the reproductive season than during the non-reproductive season (p < 0.05), implying that CycB plays essential roles in the reproductive development of male M. nipponense. An RNA interference analysis revealed that the Mn-insulin-like androgenic gland hormone expression decreased as the Mn-CycB expression decreased, and that few sperm were detected 14 days after the dsCycB treatment, indicating that CycB positively affects testis development in M. nipponense. The results of this study highlight the functions of CycB in M. nipponense, and they can be applied to studies of male reproductive development in other crustacean species.


Assuntos
Decápodes , Palaemonidae , Animais , Feminino , Masculino , Palaemonidae/genética , Palaemonidae/metabolismo , Interferência de RNA , Ciclina B/genética , Ciclina B/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Sêmen/metabolismo
19.
Brain Res ; 1797: 148117, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36220374

RESUMO

Recent reports suggested the endoplasmic reticulum stress (ERS)-associated pathway is involved with cognitive impairment in hypoxia condition. ERO1-like protein alpha (Ero1α), an endoplasmic reticulum membrane-bound N-glycoprotein, has been reported to promote oxidative protein folding. However, no studies have reported whether the Ero1α is trapped in hypoxia-induced neuronal loss through the ERS-associated pathways. In our study, this effect of Ero1α was investigated using C57BL/6J mice, the HT22 cells and primary rat neurons. C57BL/6J mice were modeled in a hypoxic chamber for 4 weeks. Behavioral tests were then carried out to test cognitive functions, including the Morris water maze and fear conditioning test. Proteomics showed that Ero1α distinctly upregulated compared with normoxia group and verified using western blotting. Flow cytometry and immunofluorescence were used to analyze the neuroprotective effect of inhibitor EN460 of Ero1α in the HT22 cells. In C57BL/6J mice, hypoxia significantly caused cognitive decline. Brain slice staining results were also used to confirm this effect. Western blot analysis demonstrated that Ero1α, ERS-associated proteins and apoptosis-associated proteins significantly increased in the hypoxia treated groups, further proliferation-related marker protein decreased. EN460, a selective endoplasmic reticulum oxidation 1 (ERO1) inhibitor, counteracted neuronal apoptosis and ameliorated neuronal cell proliferation in the HT22 cells. Taken together, our data indicate that hypoxia induces cognitive impairment, at least in part, by upregulating Ero1α which contributes to neuronal apoptosis through ERS signaling pathway, providing preliminary experimental evidence that the Ero1α is a promising therapeutic target in hypoxia-induced cognitive deficits.

20.
Fish Shellfish Immunol ; 131: 454-469, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257556

RESUMO

Molting is a basic physiological behavior of the Oriental river prawn (Macrobrachium nipponense), however, the gene expression patterns and immune mechanisms during the molting process of Oriental river prawn are unclear. In the current study, the gene expression levels of the hepatopancreas of the Oriental river prawn at different molting stages (pre-molting, Prm; mid-molting, Mm; and post-molting, Pom) were detected by mRNA sequencing. A total of 1721, 551, and 1054 differentially expressed genes (DEGs) were identified between the Prm hepatopancreas (PrmHe) and Mm hepatopancreas (MmHe), MmHe and Pom hepatopancreas (PomHe) and PrmHe and PomHe, respectively. The results showed that a total of 1151 DEGs were annotated into 316 signaling pathways, and the significantly enriched immune-related pathways were "Lysosome", "Hippo signaling pathway", "Apoptosis", "Autophagy-animal", and "Endocytosis". The qRT-PCR verification results of 30 randomly selected DEGs were consistent with RNA-seq. The expression patterns of eight immune related genes in different molting stages of the Oriental river prawn were analyzed by qRT-PCR. The function of Caspase-1 (CASP1) was further investigated by bioinformatics, qRT-PCR, and RNAi analysis. CASP1 has two identical conserved domains: histidine active site and pentapeptide motif, and the expression of CASP1 is the highest in ovary. The expression levels of triosephosphate isomerase (TPI), Cathepsin B (CTSB) and Hexokinase (HXK) were evaluated after knockdown of CASP1. This research provides a valuable basis to improve our understanding the immune mechanisms of Oriental river prawns at different molting stages. The identification of immune-related genes is of great significance for enhancing the immunity of the Oriental river prawn, or other crustaceans, by transgenic methods in the future.


Assuntos
Palaemonidae , Feminino , Animais , Palaemonidae/metabolismo , Muda/genética , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Hepatopâncreas/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...