Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38930693

RESUMO

Surface plasmon polaritons (SPPs) have become a research hotspot due to their high intensity and subwavelength localization. Through free-electron excitation, a portion of the momentum of moving electrons can be converted into SPPs. Converting highly localized SPPs into a radiated field is an approach with the potential to aid in the development of a light radiation source. Reducing losses of SPPs is currently a critical challenge that needs to be addressed. The lifetime of SPPs in metal films is longer than that in metal blocks. Traditional optical gratings can transform SPPs into radiation to avoid the decay of SPPs in metal; however, they are created by etching metal films, so they tend to alter the dispersion characteristics of these films and will emit radiation in the direction perpendicular to the metal surface. This paper proposes an approach to converting the SPPs of a metal film excited by free electrons into a radiation field via lateral grating and obtaining in-plane radiation. We investigate the properties of SPP lateral radiation. The study of lateral radiation from metal films holds significant importance for SPP radiation sources and SPP on-chip circuit development.

2.
Front Oncol ; 14: 1336763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903724

RESUMO

Background: Kaposiform hemangioendothelioma (KHE) is a rare vascular tumor with a high risk of mortality. Few studies with large samples of KHE have been reported. KHE may develop into the Kasabach-Merritt phenomenon (KMP), which is characterized by thrombocytopenia and consumptive coagulopathy. The features of severe symptomatic anemia and life-threatening low platelets make the management of KHE associated with KMP challenging. Objective: The aim of this study was to examine the clinical characteristics of patients with KHE and discuss the treatment experience for different risk groups of KHE. Methods: Through a retrospective review of 70 patients diagnosed with KHE between 2017 and 2022 in our center, we classify lesions into three clinicopathological stages based on the tumor involving depth, and divided the severity of KHE into three levels by estimating clinicopathological stages and severity of thrombocytopenia. Treatments of different severity groups were estimated with sufficient data. Results: In our cohort, 27% were neonates, and KHE lesion occurred at birth in 84% of patients. There was a slight male predominance (32 girls and 38 boys). Common clinical characteristics included associated coagulation disorder (100%), locally aggressive cutaneous blue-purple mass (89%), thrombocytopenia (78%), and local pain or joint dysfunction (20%). The lower extremities were the dominant location (35%), followed by the trunk (29%), the maxillofacial region and neck (24%), and the upper extremities (10%). Of the total cohort, 78% developed KMP; the median age at which thrombocytopenia occurred was 27.8 days. The median platelet count of patients who were associated with KMP was 24,000/µL in our cohort. Ninety-two percent of patients were given surgery treatment and 89% of these patients were given high-dose methylprednisolone (5-6 mg/kg daily) before surgery. In 55 patients with KMP, 36% were sensitive to high-dose corticosteroid therapy. Patients from the low-risk group (eight cases) underwent operation, all of whom recovered without recurrence after a maximum follow-up of 5 years. Out of 26 patients from the high-risk group, 25 underwent surgery treatment, with 1 case undergoing secondary surgery after recurrence and 1 case taking sirolimus. Out of 36 cases from the extremely high-risk group, 32 underwent surgery (including 2 cases who underwent external carotid artery ligation and catheterization), 3 of whom underwent secondary operation after recurrence, and the remaining 4 cases took medicine. The mean length of having sirolimus was 21 months; two cases stopped taking sirolimus due to severe pneumonia. Two cases died at 1 and 3 months after discharge. Conclusions: Our study describes the largest assessment of high-risk patients with KHE who have undergone an operation to date, with 5 years of follow-up to track recovery, which provides invaluable knowledge for the future treatment of patients with KHE and KMP from different risk groups: Early surgical intervention may be the most definitive treatment option for most patients with KHE; multimodality treatment is the best choice for the extremely high-risk group.

3.
iScience ; 27(4): 109391, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38532884

RESUMO

The biosafety of terahertz (THz) waves has emerged as a new area of concern with the gradual application of terahertz radiation. Even though many studies have been conducted to investigate the influence of THz radiation on living organisms, the biological effects of terahertz waves have not yet been fully revealed. In this study, Caenorhabditis elegans (C. elegans) was used to evaluate the biological consequences of whole-body exposure to 0.263 THz irradiation. The integration of transcriptome sequencing and behavioral tests of C. elegans revealed that high-power THz irradiation damaged the epidermal ultrastructures, inhibited the expression of the cuticle collagen genes, and impaired the movement of C. elegans. Moreover, the genes involved in the immune system and the neural system were dramatically down-regulated by high-power THz irradiation. Our findings offer fresh perspectives on the biological impacts of high-power THz radiation that could cause epidermal damage and provoke a systemic response.

4.
Opt Express ; 32(3): 3698-3709, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297585

RESUMO

In this paper, we use the method of high order TMn1 mode selection from the concept of narrow-band Smith-Purcell radiation (SPR) for powerful, over-mode, multi-gap extended interaction circuit designs toward millimeter wave and Terahertz (THz) region. As a core part, the multiple gaps interaction structure, equivalent to a subwavelength hole array (SHA), excites the narrow band SPR when an electron beam is injected. The SPR energy is collected by a pair of closed cavities, which satisfies (n-1) standing wave units. The SPR energy in the optimized cavity allows a high index n TMn1 mode operation to achieve the strongest Ez field and high characteristic impedance in a closed multi-gap resonant circuit. This provides an effective design to establish a stable high-order TMn1 mode that supports extended interaction circuits with large cross sections. A 0.46 THz extended interaction circuit, employing the novel high order TM51-2π mode operation output structure, has been designed to demonstrate the efficient beam-wave interaction in the proposed system. The method of TMn1 mode selection provides new insight into the understanding of the high-frequency extended interaction circuits by introducing the SPR concept, benefiting the development of millimeter wave and THz vacuum electron devices (VEDs).

5.
Front Oncol ; 13: 1256667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125939

RESUMO

Objective: To investigate the value of ultrasonography as a diagnostic aid in differentiating intramuscular capillary-type hemangioma (ICTH) from fibro-adipose vascular anomaly (FAVA). Methods: A retrospective analysis was conducted of the clinical and ultrasound imaging data of 20 patients with ICTH and 45 patients with FAVA who were admitted to and pathologically confirmed in hospital between January 2013 and April 2023. The clinical and ultrasonographic appearances of the lesions in the two groups were compared and analyzed. A stepwise regression analysis was performed, and a joint diagnostic equation was constructed using the final variables selected. The receiver operating characteristic (ROC) curve and indicators, including sensitivity and specificity, were used to evaluate the efficacy of the joint diagnostic model. Results: The two groups of patients suffering from ICTH and FAVA presented a statistically significant difference (P< 0.05) in terms of 'age', 'lesion size', 'fascial tail sign', 'presence of a fatty-tissue-like hyperecho around the lesion', 'blood flow' and 'presence of straight blood capillaries within the lesion'. Finally, the variables 'fascial tail sign' and 'presence of straight blood capillaries within the lesion' were selected to construct the model. The constructed joint diagnostic model had a sensitivity value of 70.0% (95% CI: 59.00-81.00), a specificity value of 98.0% (95% CI: 94.70-100.00) and a ROC curve value of 0.908, indicating the high efficacy of the combined diagnosis method. Conclusions: Ultrasonography can be utilized to differentiate ICTH from FAVA, and the combined diagnosis method can further improve the technique's diagnostic efficacy.

6.
iScience ; 26(9): 107572, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664616

RESUMO

Intermolecular interactions, including hydrogen bonds, dominate the pairing and unpairing of nucleic acid chains in the transfer process of genetic information. The energy of THz waves just matches with the weak interactions, so THz waves may interact with biomolecules. Here, the dynamic effects of THz electromagnetic (EM) waves on the mechanical unfolding process of RNA hairpins (WT-30nt and its mutants, rHP, SARS-CoV-2, and SRV-1 SF206) are investigated using steered molecular dynamics (SMD) simulations. The results show that THz waves can either promote the unfolding of the double helix of the RNA hairpin during the initial unfolding phase (4-21.8 THz) or significantly enhance (23.8 and 25.5 THz) or weaken (37.4 and 41.2 THz) its structural stability during unfolding. Our findings have important implications for applying THz waves to regulate dynamic deconvolution processes, such as gene replication, transcription, and translation.

7.
iScience ; 26(10): 107849, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766988

RESUMO

Terahertz science and technology has recently shown new application prospects in artificial intelligence. It is found that terahertz unipolar stimulation can activate cell membrane hydrophilic pores. However, the behaviors of Na+, K+-ATPase and energy consumption during this period remain unknown. This paper investigates these behaviors by Na+, K+-ATPase and electroporation models, based on the interaction theory between terahertz fields and ions at the cellular level. The effective diameters of life ions are considered in the aqueous solution. From results, Na+, K+-ATPases can be activated and stay for a while before close after the stimulation. Their life ion flows are far lower than the flows via the pores. And their power dissipation is as low as 10-11 W in both rat neostriatal neurons and guinea pig ventricular myocytes. The results keep tenable in 0.1-1.2 THz. These lay the basis for investigations of information communication mechanisms in cells under terahertz stimulation.

8.
Sensors (Basel) ; 23(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37430677

RESUMO

In this paper, a novel staggered double-segmented grating slow-wave structure (SDSG-SWS) is developed for wide-band high-power submillimeter wave traveling-wave tubes (TWTs). The SDSG-SWS can be considered as a combination of the sine waveguide (SW) SWS and the staggered double-grating (SDG) SWS; that is, it is obtained by introducing the rectangular geometric ridges of the SDG-SWS into the SW-SWS. Thus, the SDSG-SWS has the advantages of the wide operating band, high interaction impedance, low ohmic loss, low reflection, and ease of fabrication. The analysis for high-frequency characteristics shows that, compared with the SW-SWS, the SDSG-SWS has higher interaction impedance when their dispersions are at the same level, while the ohmic loss for the two SWSs remains basically unchanged. Furthermore, the calculation results of beam-wave interaction show that the output power is above 16.4 W for the TWT using the SDSG-SWS in the range of 316 GHz-405 GHz with a maximum power of 32.8 W occurring at 340 GHz, whose corresponding maximum electron efficiency is 2.84%, when the operating voltage is 19.2 kV and the current is 60 mA.

9.
Opt Express ; 31(11): 18420-18429, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381553

RESUMO

Vacuum electronic devices utilizing free-electron-based mechanisms are a crucial class of terahertz radiation sources that operate by modulating electron beams. In this study, we introduce what we believe is a novel approach to enhance the second harmonic of electron beams and substantially increase the output power at higher frequencies. Our method employs a planar grating for fundamental modulation and a transmission grating operating in the backward region to augment the harmonic coupling. The outcome is a high power output of the second harmonic signal. Contrasting with traditional linear electron beam harmonic devices, the proposed structure can achieve an output power increase of an order of magnitude. We have investigated this configuration computationally within the G-band. Our findings indicate that an electron beam density of 50 A/cm2 at 31.5 kV can produce a 0.202 THz center frequency signal with an output power of 4.59 W. As the electron beam voltage is adjusted from 23 kV to 38.5 kV, the output signal frequency shifts from 0.195 THz to 0.205 THz, generating several watts of power output. The starting oscillation current density at the center frequency point is 28 A/cm2, which is significantly lower in the G-band compared to conventional electron devices. This reduced current density has substantial implications for the advancement of terahertz vacuum devices.

10.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050577

RESUMO

In this paper, an angular radial extended interaction amplifier (AREIA) that consists of a pair of angular extended interaction cavities is proposed. Both the convergence angle cavity and the divergence angle cavity, which are designed for the converging beam and diverging beam, respectively, are investigated to present the potential of the proposed AREIA. They are proposed and explored to improve the beam-wave interaction capability of W-band extended interaction klystrons (EIKs). Compared to conventional radial cavities, the angular cavities have greatly decreased the ohmic loss area and increased the characteristic impedance. Compared to the sheet beam (0°) cavity, it has been found that the convergence angle cavity has a higher effective impedance and the diverging beam has a weaker space-charge effect under the same ideal electron beam area; the advantages become more obvious as the propagation distance increases. Particle-in-cell (PIC) results have shown that the diverging beam (8°) EIA performs better at an output power of 94 GHz under the condition of lossless, while the converging beam (-2°) EIA has a higher output power of 6.24 kW under the conditions of ohmic loss, an input power of 0.5 W, and an ideal electron beam of 20.5 kV and 1.5 A. When the loss increases and the beam current decreases, the output power of the -2° EIA can be improved by nearly 30% compared to the 0° EIA, and the -2° EIA has a greatly improved beam-wave interaction capacity than conventional EIAs under those conditions. In addition, an angular radial electron gun is designed.

11.
IEEE Trans Med Imaging ; 42(8): 2425-2438, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37028075

RESUMO

Microwave-induced thermoacoustic imaging (MTAI) using low-energy and long-wavelength microwave photons has great potential in detecting deep-seated diseases due to its unique ability of visualizing intrinsic electric properties of tissue in high resolution. However, the low contrast in conductivity between a target (e.g., a tumor) and the surroundings sets a fundamental limit for achieving a high imaging sensitivity, which significantly hinders its biomedical applications. To overcome this limit, we develop a split ring resonator (SRR) topology based MTAI (SRR-MTAI) approach to achieve highly sensitive detection by precise manipulation and efficient delivery of microwave energy. The in vitro experiments show that SRR-MTAI demonstrates an ultrahigh sensitivity of distinguishing a 0.4% difference in saline concentrations and a 2.5-fold enhancement of detecting a tissue target which mimicks a tumor embedded at a depth of 2 cm. The in vivo animal experiments conducted indicate that the imaging sensitivity between a tumor and the surrounding tissue is increased by 3.3-fold using SRR-MTAI. The dramatic enhancement in imaging sensitivity suggests that SRR-MTAI has the potential to open new avenues for MTAI to tackle a variety of biomedical problems that were impossible previously.


Assuntos
Imageamento de Micro-Ondas , Neoplasias , Animais , Micro-Ondas , Diagnóstico por Imagem/métodos , Fótons
12.
Histopathology ; 83(2): 286-297, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37099413

RESUMO

AIMS: Fibroadipose vascular anomaly (FAVA) is a complex vascular malformation that is likely to be under-recognised. In this study we aimed to report the pathological features and somatic PIK3CA mutations associated with the most common clinicopathological features. METHODS AND RESULTS: Cases were identified by reviewing the lesions resected from patients with FAVA registered at our Haemangioma Surgery Centre and unusual intramuscular vascular anomalies in our pathology database. There were 23 males and 52 females, who ranged in age from 1 to 51 years. Most cases occurred in the lower extremities (n = 62). The majority of the lesions were intramuscular, with a few disrupting the overlying fascia and involving subcutaneous fat (19 of 75), and a minority of the cases had cutaneous vascular stains (13 of 75). Histopathologically, the lesion was composed of anomalous vascular components that were intertwined with mature adipocytic and dense fibrous tissues and vascular components with: (a) clusters of thin-walled channels, some with blood-filled nodules and others with thin walls resembling pulmonary alveoli; (b) numerous small vessels (arteries, veins and indeterminate channels) - proliferative small blood vessels were often mixed with adipose tissue; (c) larger abnormal venous channels usually irregularly and sometimes excessively muscularised; (d) lymphoid aggregates or lymphoplasmacytic aggregates were usually observed; and (e) lymphatic malformations were sometimes seen as minor elements. All patients had their lessons subjected to PCR, and 53 patients had somatic PIK3CA mutations (53 of 75). CONCLUSIONS: FAVA is a slow-flow vascular malformation with specific clinicopathological and molecular characteristics. Its recognition is fundamental for its clinical/prognostic implications and for targeted therapy.


Assuntos
Doenças Vasculares , Malformações Vasculares , Masculino , Feminino , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Malformações Vasculares/genética , Malformações Vasculares/patologia , Tecido Adiposo/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética
13.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108273

RESUMO

Understanding the vibrational information encoded within the terahertz (THz) spectrum of biomolecules is critical for guiding the exploration of its functional responses to specific THz radiation wavelengths. This study investigated several important phospholipid components of biological membranes-distearoyl phosphatidylethanolamine (DSPE), dipalmitoyl phosphatidylcholine (DPPC), sphingosine phosphorylcholine (SPH), and lecithin bilayer-using THz time-domain spectroscopy. We observed similar spectral patterns for DPPC, SPH, and the lecithin bilayer, all of which contain the choline group as the hydrophilic head. Notably, the spectrum of DSPE, which has an ethanolamine head group, was different. Interestingly, density functional theory calculations confirmed that the absorption peak common to DSPE and DPPC at approximately 3.0 THz originated from a collective vibration of their similar hydrophobic tails. Accordingly, the cell membrane fluidity of RAW264.7 macrophages with irradiation at 3.1 THz was significantly enhanced, leading to improved phagocytosis. Our results highlight the importance of the spectral characteristics of the phospholipid bilayers when studying their functional responses in the THz band and suggest that irradiation at 3.1 THz is a potential non-invasive strategy to increase the fluidity of phospholipid bilayers for biomedical applications such as immune activation or drug administration.


Assuntos
Fosfolipídeos , Espectroscopia Terahertz , Lecitinas , Espectroscopia Terahertz/métodos
14.
Pediatr Radiol ; 53(3): 404-414, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36271054

RESUMO

BACKGROUND: As a complex vascular malformation, fibro-adipose vascular anomaly was first proposed in 2014. Its overlap with other vascular malformations regarding imaging and clinical features often leads to misdiagnosis and improper management. OBJECTIVE: To construct a radiomics-based machine learning model to help radiologists differentiate fibro-adipose vascular anomaly from common venous malformations. MATERIALS AND METHODS: We retrospectively analyzed 178 children, adolescents and young adults with vascular malformations (41 fibro-adipose vascular anomaly and 137 common vascular malformation cases) who underwent MRI before surgery between May 2012 to January 2021. We extracted radiomics features from T1-weighted images and fat-saturated (FS) T2-weighted images and further selected features through least absolute shrinkage and selection operator (LASSO) and Boruta methods. We established eight weighted logistic regression classification models based on various combinations of feature-selection strategies (LASSO or Boruta) and sequence types (single- or multi-sequence). Finally, we evaluated the performance of each model by the mean area under the receiver operating characteristics curve (ROC-AUC), sensitivity and specificity in 10 runs of repeated k-fold (k = 10) cross-validation. RESULTS: Two multi-sequence models based on axial FS T2-W, coronal FS T2-W and axial T1-W images showed promising performance. The LASSO-based multi-sequence model achieved an AUC of 97%±3.8, a sensitivity of 94%±12.4 and a specificity of 89%±9.0. The Boruta-based multi-sequence model achieved an AUC of 97%±3.7, a sensitivity of 95%±10.5 and a specificity of 87%±9.0. CONCLUSION: The radiomics-based machine learning model can provide a promising tool to help distinguish fibro-adipose vascular anomaly from common venous malformations.


Assuntos
Pneumopatias , Malformações Vasculares , Adulto Jovem , Adolescente , Criança , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Aprendizado de Máquina
15.
Vasc Endovascular Surg ; 57(2): 106-113, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36168791

RESUMO

OBJECTIVE: To analyse the image characteristics of fibro-adipose vascular anomaly (FAVA) and the value of ultrasound and magnetic resonance imaging (MRI) for its diagnosis. METHODS: The clinical and imaging data characteristics of 10 patients with FAVA admitted to our hospital between January 2018 and December 2020 who underwent ultrasound and MRI diagnosis were retrospectively analysed. RESULTS: A total of 10 patients (six males and four females) with pathologically confirmed FAVA, aged from 3 to 27 years (median: 13 years), underwent ultrasound and MRI; of these, two patients underwent MRI-enhanced examinations. All lesions involved mainly muscle, with a few disruptions and involvements of subcutaneous fat. Five cases were located subcutaneously near the fascia; one case was adjacent to the periosteum. Ultrasound showed fascial tail in seven cases, and MRI showed fascial tail in six cases. Both ultrasound and MRI showed the lesions to be oval-shaped masses with blurred borders and a mean maximum diameter of 99.8 ± 48.7 mm. Ultrasound showed a mass with a mixture of high and low echoic areas. Magnetic resonance imaging imaging showed a heterogeneous, mixed-signal intensity on T1-weighted images, probably influenced by the fibrous and fatty components of the lesion. T2-weighted images showed a mixed-high signal. Enhanced computed tomography scans showed significant heterogeneous enhancement of the lesions. CONCLUSION: Both ultrasound and MRI showed that fascial tail sign is an important imaging feature for FAVA disease; this provides a reliable basis for its diagnosis and can be used to distinguish it from venous malformations, which have no fascial tail signs. Therefore, fascial tail signs can be used as imaging features and require special attention in the diagnosis of FAVA disease.


Assuntos
Doenças Vasculares , Malformações Vasculares , Masculino , Feminino , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Estudos Retrospectivos , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos , Ultrassonografia , Tomografia Computadorizada por Raios X , Malformações Vasculares/diagnóstico por imagem , Malformações Vasculares/terapia , Obesidade
16.
Front Bioeng Biotechnol ; 10: 1055232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440450

RESUMO

How terahertz signals perform in the neural system has attracted widespread interest in the life sciences community. Relevant experimental reveals that in animal nerve cells, the myelin sheath of the nerve axon has a higher refractive index than the intracellular and extracellular fluids in the Terahertz-far-infrared (THz-FIR) frequency band. This makes THz-FIR wave transmission possible in nerve fibers. Based on this premise, this article carries out the following work from the theoretical level to investigate the electromagnetic (EM) characteristics of in vivo nerve fibers at the THz-FIR band. First, the EM transmission model of the nerve fibers is established and studied theoretically. The dispersion curves of THz-FIR wave modals transmission in nerve fibers are calculated, which predict that nerve fibers can act as dielectric waveguides for transmitting THz-FIR waves and the THz-FIR waves can transmit at speeds up to 108 m/s. Second, a mode matching algorithm is proposed, which is named RNMMA, to calculate the transmission characteristics of THz-FIR waves at the nodes of Ranvier. The scattering matrix obtained from the proposed algorithm is in good agreement with the results from EM simulation software, which reveals how THz-FIR signals are transmitted forward through the nodes of Ranvier with low loss.

17.
Phys Rev E ; 105(2-2): 025302, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291077

RESUMO

Because of helical phase wavefront distribution, vortex electromagnetic waves are considered to carry more information and additional degrees of freedom than traditional spherical waves. Therefore, a vortex wave carrying orbital angular momentum (OAM) can improve inversion and imaging accuracy. In this work, we revisit the reconstruction of three-dimensional objects in layered composite structures extended with OAM. In forward modeling, the concentric uniform circle array is used to generate electromagnetic vortex beams. To analyze the difference of vortex beams, the electric field radiation pattern and phase pattern distribution of OAM waves with different modes are calculated. Then, the scattered field of layered media illuminated by different OAM beams is determined by the dyadic Green's function and the stabilized biconjugate gradient technique with a fast Fourier transform algorithm. In the inversion, the variational Born iterative method is used to reconstruct targets in layered composite structures, and multiple OAM modes are used to improve the reconstruction results. The numerical results prove that the permittivity of the target can be better reconstructed by using the multiple OAM modes rather than the traditional spherical wave. With the increase of OAM mode number, the reconstructed target parameters are closer to the true value. We expect that our results will provide a better understanding of the OAM and pave the way for the improvement of inversion and optical imaging technology using vortex waves.

18.
iScience ; 25(1): 103561, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34988403

RESUMO

The question of whether terahertz (THz) waves can interact with ions in channels of nerve cells and cause a further reaction has attracted much attention. To answer this question, we investigate the spontaneous radiation generated by Ca2+ moving in calcium channels and the effect of THz radiation on the transport of Ca2+ by solving the mathematical physical model through Brownian dynamics (BD) simulations. It is obtained that the moving Ca2+ in a calcium channel can generate electromagnetic radiation, the corresponding spectrum of which is concentrated in the THz range. Meanwhile, both the ion number in the channel and the background temperature are proved to have significant effects on the spontaneous emission spectra. The studies also show that external THz radiation can accelerate Ca2+ transport through the ion channel. These results are expected to provide a theoretical basis for the future treatment of THz waves in the neurological field.

19.
Biochim Biophys Acta Biomembr ; 1864(1): 183811, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34744023

RESUMO

Bipolar cancellation is the phenomenon in which the permeability of cell membranes subjected to high intensity short pulsed electric field (ns-µs range) is reduced or eliminated when the system is subjected to bipolar instead of monopolar pulses. Although several studies have tried to explain bipolar cancellation, the underlying mechanisms remain unclear. Very few articles study bipolar cancellation by means of molecular dynamics (MD) simulation. In this paper, we investigated the molecular mechanisms underlying the difference in electroporation induced by bipolar and monopolar picosecond electric pulses (EPs) using MD simulation. The electric field gradients and electric forces on water molecules of the two pulses were analyzed in detail for the first time. For a certain pulse width, when the field intensity is relatively small, the direction of bipolar electric force on the interfacial water molecule reverses as the bipolar EPs reverse, while the electric force on interfacial water molecules of the cathode side remains in the same direction as that of applied monopolar EPs. The bipolar electric force reversal delays the water protrusion and increases the pore formation time. Therefore, this phenomenon could correspond to bipolar cancellation. When the field intensity is relatively large, although the bipolar electric force direction still reverses, half of the total time of the monopolar EPs has no electric fields. The electric forces of monopolar no-field half-cycles are much smaller than those of the bipolar EPs. Therefore, the pore formation time of bipolar EPs reduces, and this phenomenon is called bipolar enhancement. The occurrence of bipolar cancellation or bipolar enhancement depends on conditions such as the width and intensity of the pulse.


Assuntos
Permeabilidade da Membrana Celular/efeitos da radiação , Eletroporação , Água/química , Membrana Celular , Eletricidade/efeitos adversos , Eletrodos , Simulação de Dinâmica Molecular
20.
IEEE Trans Med Imaging ; 41(4): 857-868, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34735339

RESUMO

Coronary calcification is a strong indicator of coronary artery disease and a key determinant of the outcome of percutaneous coronary intervention. We propose a fully automated method to segment and quantify coronary calcification in intravascular OCT (IVOCT) images based on convolutional neural networks (CNN). All possible calcified plaques were segmented from IVOCT pullbacks using a spatial-temporal encoder-decoder network by exploiting the 3D continuity information of the plaques, which were then screened and classified by a DenseNet network to reduce false positives. A novel data augmentation method based on the IVOCT image acquisition pattern was also proposed to improve the performance and robustness of the segmentation. Clinically relevant metrics including calcification area, depth, angle, thickness, volume, and stent-deployment calcification score, were automatically computed. 13844 IVOCT images with 2627 calcification slices from 45 clinical OCT pullbacks were collected and used to train and test the model. The proposed method performed significantly better than existing state-of-the-art 2D and 3D CNN methods. The data augmentation method improved the Dice similarity coefficient for calcification segmentation from 0.615±0.332 to 0.756±0.222, reaching human-level inter-observer agreement. Our proposed region-based classifier improved image-level calcification classification precision and F1-score from 0.725±0.071 and 0.791±0.041 to 0.964±0.002 and 0.883±0.008, respectively. Bland-Altman analysis showed close agreement between manual and automatic calcification measurements. Our proposed method is valuable for automated assessment of coronary calcification lesions and in-procedure planning of stent deployment.


Assuntos
Calcinose , Doença da Artéria Coronariana , Intervenção Coronária Percutânea , Placa Aterosclerótica , Calcinose/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Placa Aterosclerótica/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...