Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Plant J ; 118(6): 2068-2084, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531629

RESUMO

Bermudagrass (Cynodon dactylon) is a globally distributed, extensively used warm-season turf and forage grass with high tolerance to salinity and drought stress in alkaline environments. However, the origin of the species and genetic mechanisms for salinity tolerance in the species are basically unknown. Accordingly, we set out to study evolution divergence events in the Cynodon genome and to identify genes for salinity tolerance. We developed a 604.0 Mb chromosome-level polyploid genome sequence for bermudagrass 'A12359' (n = 18). The C. dactylon genome comprises 2 complete sets of homoeologous chromosomes, each with approximately 30 000 genes, and most genes are conserved as syntenic pairs. Phylogenetic study showed that the initial Cynodon species diverged from Oropetium thomaeum approximately 19.7-25.4 million years ago (Mya), the A and B subgenomes of C. dactylon diverged approximately 6.3-9.1 Mya, and the bermudagrass polyploidization event occurred 1.5 Mya on the African continent. Moreover, we identified 82 candidate genes associated with seven agronomic traits using a genome-wide association study, and three single-nucleotide polymorphisms were strongly associated with three salt resistance genes: RAP2-2, CNG channels, and F14D7.1. These genes may be associated with enhanced bermudagrass salt tolerance. These bermudagrass genomic resources, when integrated, may provide fundamental insights into evolution of diploid and tetraploid genomes and enhance the efficacy of comparative genomics in studying salt tolerance in Cynodon.


Assuntos
Cynodon , Genoma de Planta , Filogenia , Tolerância ao Sal , Sequenciamento Completo do Genoma , Cynodon/genética , Tolerância ao Sal/genética , Genoma de Planta/genética , Tetraploidia , Poliploidia , Cromossomos de Plantas/genética , Genes de Plantas/genética
2.
Plant Physiol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478471

RESUMO

During meiotic prophase I, chromosomes undergo large-scale dynamics to allow homologous chromosome pairing, prior to which chromosome ends attach to the inner nuclear envelope and form a chromosomal bouquet. Chromosome pairing is crucial for homologous recombination and accurate chromosome segregation during meiosis. However, the specific mechanism by which homologous chromosomes recognize each other is poorly understood. Here, we investigated the process of homologous chromosome pairing during early prophase I of meiosis in rice (Oryza sativa) using pooled oligo probes specific to an entire chromosome or chromosome arm. We revealed that chromosome pairing begins from both ends and extends towards the center from early zygotene through late zygotene. Genetic analysis of both trisomy and autotetraploidy also showed that pairing initiation is induced by both ends of a chromosome. However, healed ends that lack the original terminal regions on telocentric and acrocentric chromosomes cannot initiate homologous chromosome pairing, even though they may still enter the telomere clustering region at the bouquet stage. Furthermore, a chromosome that lacks the distal parts on both sides loses the ability to pair with other intact chromosomes. Thus, the native ends of chromosomes play a crucial role in initiating homologous chromosome pairing during meiosis and likely have a substantial impact on genome differentiation.

3.
Nucleic Acids Res ; 52(3): 1243-1257, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38180820

RESUMO

I-motifs (iMs) are four-stranded non-B DNA structures containing C-rich DNA sequences. The formation of iMs is sensitive to pH conditions and DNA methylation, although the extent of which is still unknown in both humans and plants. To investigate this, we here conducted iMab antibody-based immunoprecipitation and sequencing (iM-IP-seq) along with bisulfite sequencing using CK (original genomic DNA without methylation-related treatments) and hypermethylated or demethylated DNA at both pH 5.5 and 7.0 in rice, establishing a link between pH, DNA methylation and iM formation on a genome-wide scale. We found that iMs folded at pH 7.0 displayed higher methylation levels than those formed at pH 5.5. DNA demethylation and hypermethylation differently influenced iM formation at pH 7.0 and 5.5. Importantly, CG hypo-DMRs (differentially methylated regions) and CHH (H = A, C and T) hyper-DMRs alone or coordinated with CG/CHG hyper-DMRs may play determinant roles in the regulation of pH dependent iM formation. Thus, our study shows that the nature of DNA sequences alone or combined with their methylation status plays critical roles in determining pH-dependent formation of iMs. It therefore deepens the understanding of the pH and methylation dependent modulation of iM formation, which has important biological implications and practical applications.


Assuntos
Metilação de DNA , Oryza , Humanos , DNA/genética , Genoma , Concentração de Íons de Hidrogênio , Oryza/genética
4.
Plant Cell ; 35(7): 2484-2503, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37070946

RESUMO

Three-dimensional (3D) chromatin organization is highly dynamic during development and seems to play a crucial role in regulating gene expression. Self-interacting domains, commonly called topologically associating domains (TADs) or compartment domains (CDs), have been proposed as the basic structural units of chromatin organization. Surprisingly, although these units have been found in several plant species, they escaped detection in Arabidopsis (Arabidopsis thaliana). Here, we show that the Arabidopsis genome is partitioned into contiguous CDs with different epigenetic features, which are required to maintain appropriate intra-CD and long-range interactions. Consistent with this notion, the histone-modifying Polycomb group machinery is involved in 3D chromatin organization. Yet, while it is clear that Polycomb repressive complex 2 (PRC2)-mediated trimethylation of histone H3 on lysine 27 (H3K27me3) helps establish local and long-range chromatin interactions in plants, the implications of PRC1-mediated histone H2A monoubiquitination on lysine 121 (H2AK121ub) are unclear. We found that PRC1, together with PRC2, maintains intra-CD interactions, but it also hinders the formation of H3K4me3-enriched local chromatin loops when acting independently of PRC2. Moreover, the loss of PRC1 or PRC2 activity differentially affects long-range chromatin interactions, and these 3D changes differentially affect gene expression. Our results suggest that H2AK121ub helps prevent the formation of transposable element/H3K27me1-rich long loops and serves as a docking point for H3K27me3 incorporation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Arabidopsis/metabolismo , Lisina/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Cromatina/genética , Cromatina/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
5.
Rice (N Y) ; 16(1): 17, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36964817

RESUMO

Aneuploid refers to the gene dosage imbalance due to copy number alterations. Aneuploidy is generally harmful to the growth, development and reproduction of organisms according to the numerous research. However, it has rarely been reported on whether aneuploid have a relevant pattern of genome expression between the parental and its offspring generations. In this study, mRNA sequencing analysis was performed on rice (Oryza sativa L.) primary trisomes 11 and 12, same primary trisomes and normal individuals in their filial generation. We systematically summarized the changes in gene expression patterns that occur on cis genes and on trans genes between parental and filial generations. In T11 and T12, the ratio of cis-gene expression showed intermediate type in parents and dosage compensation in filial generations, which maybe due to more genes being downregulated. The trans genes were also affected by aneuploidy and manifested as cis-related. The strains with normal chromosomes in filial generations, there are still aneuploid-sensitive genes differentially expressed in their genomes, indicating that the effect of aneuploidy is far-reaching and could not be easily eliminated. Meanwhile, among these differentially expressed genes, genes with low-expression level were more likely to be upregulated, while genes with medium- and high-expression level were easy to be downregulated. For the different types of rice aneuploid, upregulated genes were mainly associated with genomic imbalance while downregulated genes were mainly influenced by the specific added chromosome. In conclusion, our results provide new insights into the genetic characterization and evolution of biological aneuploidy genomes.

7.
J Integr Plant Biol ; 65(6): 1394-1407, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807738

RESUMO

High salt is a major environmental factor that threatens plant growth and development. Increasing evidence indicates that histone acetylation is involved in plant responses to various abiotic stress; however, the underlying epigenetic regulatory mechanisms remain poorly understood. In this study, we revealed that the histone deacetylase OsHDA706 epigenetically regulates the expression of salt stress response genes in rice (Oryza sativa L.). OsHDA706 localizes to the nucleus and cytoplasm and OsHDA706 expression is significantly induced under salt stress. Moreover, oshda706 mutants showed a higher sensitivity to salt stress than the wild-type. In vivo and in vitro enzymatic activity assays demonstrated that OsHDA706 specifically regulates the deacetylation of lysines 5 and 8 on histone H4 (H4K5 and H4K8). By combining chromatin immunoprecipitation and mRNA sequencing, we identified the clade A protein phosphatase 2 C gene, OsPP2C49, which is involved in the salt response as a direct target of H4K5 and H4K8 acetylation. We found that the expression of OsPP2C49 is induced in the oshda706 mutant under salt stress. Furthermore, the knockout of OsPP2C49 enhances plant tolerance to salt stress, while its overexpression has the opposite effect. Taken together, our results indicate that OsHDA706, a histone H4 deacetylase, participates in the salt stress response by regulating the expression of OsPP2C49 via H4K5 and H4K8 deacetylation.


Assuntos
Histonas , Oryza , Histonas/metabolismo , Oryza/fisiologia , Tolerância ao Sal/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Front Plant Sci ; 13: 1037604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420017

RESUMO

Rice miR398 targets two stress-tolerant genes, CSD1-2 (Cu/Zn Superoxide Dismutases1-2) and CCS (copper chaperone of CSD), which usually boost plants' tolerance by inhibiting growth. So, how to accurately regulate the activities of miR398 targets and thus make rice better able to adapt to different conditions has great significances in producing rice yields under the current circumstances of shrinking arable lands resulting from global urbanization and increasing salty soil caused by irrigation. Through controlling the expressions of miR398 in different levels, we found down-regulated expression of miR398 targets can promote growth under good growth conditions while up-regulated expressions of the targets can help rice tolerate salt. In this study, we over-expressed miR398 highly, moderately, and lowly, then three concomitantly inverse levels of its targets' expression were obtained. Under normal growth conditions, the transgenic lines with low and moderate levels of over-expressions of miR398 could increase grain yields 14.5% and 7.3%, respectively, although no transgenic lines could survive well under salty conditions simulating real saline-alkali soil. Using short tandem target mimic (STTM) technology to silence miR398 highly, moderately, and lowly respectively, also three inverse levels of its targets' expression were obtained. All three transgenic lines exhibited good agronomic performances under salt stress in inverse to their degrees of STTM, but their growth was inhibited differently under normal conditions. Altogether, we suggest that flexibly manipulating the expression of miR398 is an ideal strategy to help rice survive better and achieve optimized yields under specific conditions.

9.
Plant J ; 111(3): 859-871, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35678753

RESUMO

Neocentromeres develop when kinetochores assemble de novo at DNA loci that are not previously associated with CenH3 nucleosomes, and can rescue rearranged chromosomes that have lost a functional centromere. The molecular mechanisms associated with neocentromere formation in plants have been elusive. Here, we developed a Xian (indica) rice line with poor growth performance in the field due to approximately 272 kb deletion that spans centromeric DNA sequences, including the centromeric satellite repeat CentO, in the centromere of chromosome 8 (Cen8). The CENH3-binding domains were expanded downstream of the original CentO position in Cen8, which revealed a de novo centromere formation in rice. The neocentromere formation avoids chromosomal regions containing functional genes. Meanwhile, canonical histone H3 was replaced by CENH3 in the regions with low CENH3 levels, and the CenH3 nucleosomes in these regions became more periodic. In addition, we identified active genes in the deleted centromeric region, which are essential for chloroplast growth and development. In summary, our results provide valuable insights into neocentromere formation and show that functional genes exist in the centromeric regions of plant chromosomes.


Assuntos
Oryza , Centrômero/genética , Cromossomos Humanos Par 8 , Cromossomos de Plantas/genética , Humanos , Nucleossomos/genética , Oryza/genética
10.
Curr Oncol ; 29(4): 2695-2705, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35448194

RESUMO

This study aimed to establish a prognosis-prediction model based on serological indicators in patients with epithelial ovarian cancer (EOC). Patients initially diagnosed as ovarian cancer and surgically treated in Fudan University Shanghai Cancer Center from 2014 to 2018 were consecutively enrolled. Serological indicators preoperatively were collected. A risk model score (RMS) was constructed based on the levels of serological indicators determined by receiver operating characteristic curves. We correlated this RMS with EOC patients' overall survival (OS). Finally, 635 patients were identified. Pearson's χ2 results showed that RMS was significantly related to clinical parameters. Kaplan−Meier analysis demonstrated that an RMS less than 3 correlated with a longer OS (p < 0.0001). Specifically, significant differences were perceived in the survival curves of different subgroups. Multivariate Cox analysis revealed that age (p = 0.015), FIGO stage (p = 0.006), ascites (p = 0.015) and RMS (p = 0.005) were independent risk factors for OS. Moreover, RMS combined with age, FIGO and ascites could better evaluate for patients' prognosis in DCA analyses. Our novel RMS-guided classification preoperatively identified the prognostic subgroups of patients with EOC and showed higher accuracy than the conventional method, meaning that it could be a useful and economical tool for tailored monitoring and/or therapy.


Assuntos
Ascite , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/cirurgia , China , Feminino , Humanos , Prognóstico
11.
J Cancer ; 13(3): 744-751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154443

RESUMO

Two hundred twenty-four breast cancer patients with paired tissue and plasma samples were enrolled from 3 clinical centers to evaluate sensitivity and specificity of a digital PCR HER2 amplification assay. All patients were histologically confirmed diagnosis of locally advanced and recurrent or metastatic breast cancer with stage III/IV and had tissue HER2 status determinations using IHC/FISH. For the whole 224 advanced breast cancer patients, the sensitivity between dPCR in plasma and IHC/FISH in tissue samples is 43.75% (42/96), the specificity is 84.38% (108/128) and the overall concordance is 66.96% (150/224). Interestingly, when we looked at stage III, stage IV and recurrent or metastatic breast cancer separately, compared with IHC/FISH in tissue samples, the sensitivity of dPCR in plasma increases from 37.93% (11/29) for stage III to 41.67% (15/36) for stage IV cancer. Recurrent breast cancer patient had an increased sensitivity of 51.61% (16/31). This is consistent with our expectation sensitivity would increase concordantly as tumor burden goes up. On the other hand, specificity decreased from 92.68% (38/41) for stage III to 86.44% (51/59) for stage IV cancer. Recurrent breast cancer patient had a specificity of only 67.86% (19/28). This is, in part, due to inter- and intra-tumor heterogeneity. Many patients determined to be negative for HER2 amplification in tissue biopsy could have HER2 positive tumors at other sites, which was detected by the liquid biopsy. This study suggested the necessity of liquid biopsy for HER2 amplification detection and demonstrated digital PCR can be used as a companion diagnostic tool to determine HER2 amplification status. It also suggested that a liquid biopsy should follow a negative result from tissue biopsy to avoid false negative results especially for late-stage breast cancer patients and ones who experienced relapse or became resistant to current therapy. Future studies should focus on therapeutic effects on patients determined to be HER2 positive through liquid biopsy and collecting additional tissue biopsies to identify HER2 positive tumor when the original tissue biopsy and liquid biopsy don't agree.

12.
Bioinformatics ; 37(Suppl_1): i451-i459, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252975

RESUMO

MOTIVATION: The recent emergence of cloud laboratories-collections of automated wet-lab instruments that are accessed remotely, presents new opportunities to apply Artificial Intelligence and Machine Learning in scientific research. Among these is the challenge of automating the process of optimizing experimental protocols to maximize data quality. RESULTS: We introduce a new deterministic algorithm, called PaRallel OptimizaTiOn for ClOud Laboratories (PROTOCOL), that improves experimental protocols via asynchronous, parallel Bayesian optimization. The algorithm achieves exponential convergence with respect to simple regret. We demonstrate PROTOCOL in both simulated and real-world cloud labs. In the simulated lab, it outperforms alternative approaches to Bayesian optimization in terms of its ability to find optimal configurations, and the number of experiments required to find the optimum. In the real-world lab, the algorithm makes progress toward the optimal setting. DATA AVAILABILITY AND IMPLEMENTATION: PROTOCOL is available as both a stand-alone Python library, and as part of a R Shiny application at https://github.com/clangmead/PROTOCOL. Data are available at the same repository. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Inteligência Artificial , Software , Algoritmos , Teorema de Bayes , Laboratórios
13.
Yi Chuan ; 43(5): 397-424, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33972213

RESUMO

Cytogenetics was established based on the "Chromosome theory of inheritance", proposed by Boveri and Sutton and evidenced by Morgan's lab in early stage of the 20 th centrary. With rapid development of related research areas, especially molecular genetics, cytogenetics developed from traditional into a new era, molecular cytogenetics in late 1960s. Featured by an established technique named DNA in situ hybridization (ISH), molecular cytogenetics has been applied in various research areas. ISH provids vivid and straightforward figures showing the virtual presence of DNA, RNA or proteins. In combination with genomics and cell biology tools, ISH and derived techniques have been widely used in studies of the origin, evolution, domestication of human, animal and plant, as well as wide hybridization and chromosome engineering. The physical location and order of DNA sequences revealed by ISH enables the detection of chromosomal re-arrangments among related species and gaps of assembled genome sequences. In addition, ISH using RNA or protein probes can reveal the location and quantification of transcripted RNA or translated protein. Since the 1970s, scientists from universities or institutes belonging to the Jiangsu Society of Genetics have initiated cytogenetics researches using various plant species. In recent years, research platforms for molecular cytogenetics have also been well established in Nanjing Agricultural University, Yangzhou University, Nanjing Forestry University, Jiangsu Xuhuai Academy of Agricultural Sciences, and Jiangsu Normal University. The application of molecular cytogenetics in plant evolution, wide hybridization, chromosome engineering, chromosome biology, genomics has been successful. Significant progresses have been achieved, both in basic and applied researches. In this paper, we will review main research progresses of plant cytogenetics in Jiangsu province, and discuss the potential development of this research area.


Assuntos
Genômica , Plantas , Animais , Análise Citogenética , Citogenética , Humanos , Hibridização In Situ
14.
Cardiovasc Diagn Ther ; 10(5): 1167-1174, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33224740

RESUMO

BACKGROUND: To compare the clinical outcomes and hospital cost of robotic versus thoracoscopic approaches to mitral valve plasty (MVP). METHODS: We retrospectively analyzed patients who received minimal invasive MVP between 2007 January and 2020 January at our department. The basic characteristics, echocardiography, surgical data, postoperative adverse events and hospital cost of the patients were collected. The primary outcomes of this study were direct hospital cost and 30-day outcomes, including the operative time, complications, and length of hospital stay. RESULTS: A total of 234 patients received minimally invasive MVP by using robotic (n=121) and thoracoscopic (n=113) technique respectively. The overall 30-day mortality rate was 0.9% (n=2), with no significant difference between two groups. The cardiopulmonary bypass time and aorta clamping time in thoracoscopic group were longer than that in robotic group (153.2±25.6 vs. 123.8±34.9 min and 111.8±23.0 vs. 84.9±24.3 min, P<0.001). The intraoperative blood transfusion rate (52.2% vs. 64.5%) and ICU time (2.8±2.3 vs. 3.6±2.7 days, all P<0.05) of the thoracoscopic group were lower than those in the robotic group. The adjusted hospital and operating room cost of the thoracoscopic group were significant lower ($18,208.4±$4,429.1 vs. $35,674.3±$4,936.1 and $9,038.3±$2,171.7 vs. $18,655.1±$2,558.3, all P<0.001). CONCLUSIONS: Both robotic and thoracoscopic approach for MVP are safe and reliable. Robotic technique has shorter operation time, while thoracoscopic technique has more advantages in blood transfusion rate, postoperative ventilation time, ICU duration and hospitalization expenses.

15.
J Card Surg ; 35(12): 3395-3402, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32939788

RESUMO

OBJECTIVE: This study aimed to evaluate the role of surgical left atrial appendage (LAA) exclusion in the prevention of stroke after mitral valve replacement (MVR). METHODS: We retrospectively reviewed clinical data of 860 patients who received MVR in our center from January 2008 to January 2013. The patients were randomly assigned to two surgical groups, namely LAA exclusion group (n = 521) and LAA nonexclusion group (n = 339) according to whether concurrent surgical exclusion of the LAA was to be undertaken or not before surgery in a blind fashion. MVR was performed by two experienced surgeons. The LAA was explored during the operation and mural thrombus removed in all cases. The LAA was left intact in nonocclusion group whereas the neck of the LAA was closed with a two-layer continued suture in exclusion group. The incidence of early postoperative ischemic stroke between the two groups was compared. RESULTS: The patients' age was 53 ± 12 years, with 48.1% male and 67.9% with rheumatic disease. Mural thrombosis was seen in 18.8% of the patients and atrial fibrillation (AF) coexisted in 62.4%. All operations were successfully performed and no difference was noted in in-hospital mortality, re-exploration for bleeding, and other major complications between the two groups. The incidence of ischemic stroke in LAA exclusion group was significantly lower than in nonexclusion group (0.6% vs. 2.7%, p = .011). The subgroup multivariate analysis showed that LAA exclusion significantly reduced the risk of postoperative stroke in patients with AF (odds ratio [OR] = 0.070, 95% confidence interval [CI]: 0.006-0.705, p = .025) but not in non-AF patients (OR = 1.902, 95% CI: 0.171-21.191, p = .601). CONCLUSIONS: Concurrent LAA exclusion during MVR is a safe and effective way to reduce postoperative ischemic stroke, particularly in patients with AF.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Acidente Vascular Cerebral , Adulto , Idoso , Apêndice Atrial/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valva Mitral/cirurgia , Estudos Retrospectivos , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/prevenção & controle
16.
Rice (N Y) ; 13(1): 34, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32572646

RESUMO

BACKGROUND: Lysine 2-hydroxyisobutyrylation (Khib), a newly identified post-translational modification, is known to regulate transcriptional activity in animals. However, extensive studies of the lysine 2-hydroxyisobutyrylome in plants and animals have yet to be performed. RESULTS: In this study, using LC-MS/MS qualitative proteomics strategies, we identified 4163 Khib sites on 1596 modified proteins in rice (Oryza sativa) seedlings. Motif analysis revealed 10 conserved motifs flanking the Khib sites, and subcellular localization analysis revealed that 44% of the Khib proteins are localized in the chloroplast. Gene ontology function, KEGG pathway, and protein domain enrichment analyses revealed that Khib occurs on proteins involved in diverse biological processes and is especially enriched in carbon metabolism and photosynthesis. Among the modified proteins, 20 Khib sites were identified in histone H2A and H2B, while only one site was identified in histone H4. Protein-protein interaction (PPI) network analysis further demonstrated that Khib participates in diverse biological processes including ribosomal activity, biosynthesis of secondary metabolites, and metabolic pathways. In addition, a comparison of lysine 2-hydroxyisobutyrylation, acetylation, and crotonylation in the rice proteome showed that 45 proteins with only 26 common lysine sites are commonly modified by three PTMs. The crosstalk of modified sites and PPI among these PTMs may form a complex network with both similar and different regulatory mechanisms. CONCLUSIONS: In summary, our study comprehensively profiles the lysine 2-hydroxyisobutyrylome in rice and provides a better understanding of its biological functions in plants.

17.
New Phytol ; 227(5): 1417-1433, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32433775

RESUMO

Plants maintain a dynamic balance between plant growth and stress tolerance to optimise their fitness and ensure survival. Here, we investigated the roles of a clade A type 2C protein phosphatase (PP2C)-encoding gene, OsPP2C09, in regulating the trade-off between plant growth and drought tolerance in rice (Oryza sativa L.). The OsPP2C09 protein interacted with the core components of abscisic acid (ABA) signalling and showed PP2C phosphatase activity in vitro. OsPP2C09 positively affected plant growth but acted as a negative regulator of drought tolerance through ABA signalling. Transcript and protein levels of OsPP2C09 were rapidly induced by exogenous ABA treatments, which suppressed excessive ABA signalling and plant growth arrest. OsPP2C09 transcript levels in roots were much higher than those in shoots under normal conditions. After ABA, polyethylene glycol and dehydration treatments, the accumulation rate of OsPP2C09 transcripts in roots was more rapid and greater than that in shoots. This differential expression between the roots and shoots may increase the plant's root-to-shoot ratio under drought-stress conditions. This study sheds new light on the roles of OsPP2C09 in coordinating plant growth and drought tolerance. In particular, we propose that OsPP2C09-mediated ABA desensitisation contributes to root elongation under drought-stress conditions in rice.


Assuntos
Oryza , Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
18.
Ann Thorac Surg ; 110(3): e153-e155, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32142816

RESUMO

Inferior vena cava filters are used for patients with pulmonary embolism or those with risk of embolization. Here we present a case of a 38-year-old man who underwent placement of an inferior vena cava filter because of deep vein thrombosis. The operating arm fractured and embolized to the posteromedial papillary muscle of mitral valve and the posterior inferior wall of the left ventricle through right atrium and atrioventricular septum, leading to large symptomatic mitral and tricuspid insufficiency and pericardial tamponade. Here we report a rare case where the filter migrated to the left ventricle and destroyed the mitral valve.


Assuntos
Migração de Corpo Estranho/diagnóstico , Ventrículos do Coração , Insuficiência da Valva Mitral/etiologia , Valva Mitral/lesões , Insuficiência da Valva Tricúspide/etiologia , Filtros de Veia Cava/efeitos adversos , Adulto , Tamponamento Cardíaco/diagnóstico , Tamponamento Cardíaco/etiologia , Tamponamento Cardíaco/cirurgia , Migração de Corpo Estranho/complicações , Migração de Corpo Estranho/cirurgia , Humanos , Masculino , Insuficiência da Valva Mitral/diagnóstico , Insuficiência da Valva Mitral/cirurgia , Embolia Pulmonar/etiologia , Embolia Pulmonar/prevenção & controle , Insuficiência da Valva Tricúspide/diagnóstico , Insuficiência da Valva Tricúspide/cirurgia , Veia Cava Inferior , Trombose Venosa/complicações
19.
Plant J ; 103(1): 140-153, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32022972

RESUMO

The role of rice (Oryza sativa) COM1 in meiotic homologous recombination (HR) is well understood, but its part in somatic double-stranded break (DSB) repair remains unclear. Here, we show that for rice plants COM1 conferred tolerance against DNA damage caused by the chemicals bleomycin and mitomycin C, while the COM1 mutation did not compromise HR efficiencies and HR factor (RAD51 and RAD51 paralogues) localization to irradiation-induced DSBs. Similar retarded growth at the post-germination stage was observed in the com1-2 mre11 double mutant and the mre11 single mutant, while combined mutations in COM1 with the HR pathway gene (RAD51C) or classic non-homologous end joining (NHEJ) pathway genes (KU70, KU80, and LIG4) caused more phenotypic defects. In response to γ-irradiation, COM1 was loaded normally onto DSBs in the ku70 mutant, but could not be properly loaded in the MRE11RNAi plant and in the wortmannin-treated wild-type plant. Under non-irradiated conditions, more DSB sites were occupied by factors (MRE11, COM1, and LIG4) than RAD51 paralogues (RAD51B, RAD51C, and XRCC3) in the nucleus of wild-type; protein loading of COM1 and XRCC3 was increased in the ku70 mutant. Therefore, quite differently to its role for HR in meiocytes, rice COM1 specifically acts in an alternative NHEJ pathway in somatic cells, based on the Mre11-Rad50-Nbs1 (MRN) complex and facilitated by PI3K-like kinases. NHEJ factors, not HR factors, preferentially load onto endogenous DSBs, with KU70 restricting DSB localization of COM1 and XRCC3 in plant somatic cells.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Oryza/metabolismo , Proteínas de Plantas/fisiologia , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Genes de Plantas/genética , Oryza/genética , Proteínas de Plantas/metabolismo
20.
Plant J ; 101(1): 112-121, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494982

RESUMO

Fluorescence in situ hybridization using probes based on oligonucleotides (oligo-FISH) is a useful tool for chromosome identification and karyotype analysis. Here we developed two oligo-FISH probes that allow the identification of each of the 12 pairs of chromosomes in rice (Oryza sativa). These two probes comprised 25 717 (green) and 25 215 (red) oligos (45 nucleotides), respectively, and generated 26 distinct FISH signals that can be used as a barcode to uniquely label each of the 12 pairs of rice chromosomes. Standard karyotypes of rice were established using this system on both mitotic and meiotic chromosomes. Moreover, dual-color oligo-FISH was used to characterize diverse chromosomal abnormalities. Oligo-FISH analyses using these probes in various wild Oryza species revealed that chromosomes from the AA, BB or CC genomes generated specific and intense signals similar to those in rice, while chromosomes with the EE genome generated less specific signals and the FF genome gave no signal. Together, the oligo-FISH probes we established will be a powerful tool for studying chromosome variations and evolution in the genus Oryza.


Assuntos
Cromossomos de Plantas/genética , Hibridização in Situ Fluorescente/métodos , Oryza/genética , Genoma de Planta/genética , Cariótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...