Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(14): 9725-9746, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38525054

RESUMO

This study entails the syntheses of a homopolymer, poly(diallylammonium chloride) (3), and copolymers (8a-c) containing hydrophilic/hydrophobic pendants and their role in mitigating mild steel in aggressive 20% formic acid, a type of corrosion that is not frequently discussed in the literature. The synthesized homopolymer and copolymers were characterized by FTIR, NMR, viscometry, and TGA. Inhibitor 8b was found to be the most potent, with 81.8% inhibition efficiency (IE) registered via the potentiodynamic polarization method for 100 ppm of inhibitor concentration at 30 °C. Inhibitor 8b, mixed with 2 mmol KI, showed more than 90% IE for a meager 1 ppm inhibitor concentration. For a synergism of 50 ppm inhibitor and 2 mmol KI, the IE reached a high value of 99.1%. The synergism was so good that it helped the inhibitor retain ∼100% of its original IE even after a 24 h weight loss study at 60 °C. The adsorption isotherm study showed that 8b followed the Langmuir adsorption isotherm and adsorbed via chemisorption. A very high value (2.48 × 105 L mol-1) of the equilibrium adsorption constant (Kads) indicated strong adsorption. XPS and SEM surface studies provided evidence of the inhibitor found on the metal surface. Some toxicological parameters, such as LC50, bioaccumulation factor, and developmental toxicity, have been measured computationally. A brief mechanistic insight into how the inhibitors functioned has been offered along with the DFT study.

2.
Adv Colloid Interface Sci ; 318: 102966, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37536175

RESUMO

Surfactants are well known for their colloidal and corrosion inhibition potential (CIP) due to their strong propensity to interact with metallic surfaces. However, because of their small molecular size and the fact that they are only effective at relatively high concentrations, their application in aqueous phase corrosion inhibition is often restricted. Polymeric surfactants, a unique class of corrosion inhibitors, hold the potential to eradicate the challenges associated with using surfactants in corrosion inhibition. They strongly bond with the metallic surface and offer superior CIP because of their macromolecular polymeric structure and abundance of polar functional groups. In contrast to conventional polymeric corrosion inhibitors, the inclusion of polar functional groups also aids in their solubilization in the majority of popular industry-based electrolytes. Some of the major functional groups present in polymeric surfactants used in corrosion mitigation include O (ether), glycidyl (cyclic ether), -CONH2 (amide), -COOR (ester), -SO3H (sulfonic acid), -COOH (carboxyl), -NH2 (amino), - + NR3/- + NHR2/- + NH2R/- + NH3 (quaternary ammonium), -OH (hydroxyl), -CH2OH (hydroxymethyl), etc. The current viewpoint offers state-of-the-art information on polymer surfactants as newly developing ideal alternatives for conventional corrosion inhibitors. The industrial scale-up, colloidal, coordination, adsorption properties, and structural requirements of polymer surfactants have also been established based on the knowledge obtained from the literature. Finally, the challenges, drawbacks, and potential benefits of using polymer surfactants have also been discussed.

3.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363152

RESUMO

The phenomenon of corrosion threatens metallic components, human safety, and the economy. Despite being eco-friendly and promising as a corrosion inhibitor, acridine has not been explored to its full potential. In this review, we have discussed multiple biological activities that acridines have been found to show in a bid to prove that they are environmentally benign and much less toxic than many inhibitors. Some synthetic routes to acridines and substituted acridines have also been discussed. Thereafter, a multitude of acridines and substituted acridines as corrosion inhibitors of different metals and alloys in various corrosive media have been highlighted. A short mechanistic insight into how acridine-based compounds function as corrosion inhibitors have also been included. We believe this review will generate an impression that there is still much to learn about previously reported acridines. In the wake of recent surges to find efficient and non-toxic corrosion inhibitors, acridines and their analogs could be an appropriate answer.

4.
ACS Omega ; 7(38): 33680-33698, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188320

RESUMO

With an ever-increasing population and unpredictable climate changes, meeting energy demands and maintaining a sustainable environment on Earth are two of the greatest challenges of the future. Biogas can be a very significant renewable source of energy that can be used worldwide. However, to make it usable, upgrading the gas by removing the unwanted components is a very crucial step. CO2 being one of the major unwanted components and also being a major greenhouse gas must be removed efficiently. Different methods such as physical adsorption, cryogenic separation, membrane separation, and chemical absorption have been discussed in detail in this review because of their availability, economic value, and lower environmental footprint. Three chemical absorption methods, including alkanolamines, alkali solvents, and amino acid salt solutions, are discussed. Their primary works with simple chemicals along with the latest works with more complex chemicals and different mechanical processes, such as the DECAB process, are discussed and compared. These discussions provide valuable insights into how different processes vary and how one is more advantageous or disadvantageous than the others. However, the best method is yet to be found with further research. Overall, this review emphasizes the need for biogas upgrading, and it discusses different methods of carbon capture while doing that. Methods discussed here can be a basic foundation for future research in carbon capture and green chemistry. This review will enlighten the readers about scientific and technological challenges regarding carbon dioxide minimization in biogas technology.

5.
Chem Asian J ; 16(11): 1324-1364, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33844882

RESUMO

Corrosion is a phenomenon that devastatingly affects innovative, industrial, and mechanical applications, especially in the oil and gas industries. The corrosion conceivably influences industrial equipment; it deteriorates the environment and lessens the equipment/infrastructure's lifetime. Considering the significant impact of corrosion in our daily lives, this review article aims to briefly discuss the significance of corrosion and different control methods with special attention on corrosion inhibitors. The classification of corrosion inhibitors based on types and their advantage/limitations, and heterocyclic compounds as potential corrosion inhibitors, mainly nitrogen-based compounds (pyridine (1N), pyrimidine (2N), and triazines (3N) fused ring benzimidazole, etc.), and their biological significance has been discussed in detail. The mechanism, challenges, and applications of heterocyclic compounds as corrosion inhibitors in various industrial relevant corrosive environments such as acid pickling, descaling operation in the desalination plant, oil gas industry, etc., have also been highlighted in the review.


Assuntos
Compostos Heterocíclicos/química , Azóis/química , Corrosão , Metais/química , Piridinas/química , Pirimidinas/química , Triazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...