Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 116(1): 97-108, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20407036

RESUMO

Human red cell differentiation requires the action of erythropoietin on committed progenitor cells. In iron deficiency, committed erythroid progenitors lose responsiveness to erythropoietin, resulting in hypoplastic anemia. To address the basis for iron regulation of erythropoiesis, we established primary hematopoietic cultures with transferrin saturation levels that restricted erythropoiesis but permitted granulopoiesis and megakaryopoiesis. Experiments in this system identified as a critical regulatory element the aconitases, multifunctional iron-sulfur cluster proteins that metabolize citrate to isocitrate. Iron restriction suppressed mitochondrial and cytosolic aconitase activity in erythroid but not granulocytic or megakaryocytic progenitors. An active site aconitase inhibitor, fluorocitrate, blocked erythroid differentiation in a manner similar to iron deprivation. Exogenous isocitrate abrogated the erythroid iron restriction response in vitro and reversed anemia progression in iron-deprived mice. The mechanism for aconitase regulation of erythropoiesis most probably involves both production of metabolic intermediates and modulation of erythropoietin signaling. One relevant signaling pathway appeared to involve protein kinase Calpha/beta, or possibly protein kinase Cdelta, whose activities were regulated by iron, isocitrate, and erythropoietin.


Assuntos
Células Precursoras Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Proteína 1 Reguladora do Ferro/metabolismo , Ferro/farmacologia , Anemia Ferropriva/sangue , Anemia Ferropriva/etiologia , Anemia Ferropriva/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Deficiências de Ferro , Proteína 1 Reguladora do Ferro/genética , Isocitratos/administração & dosagem , Células K562 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos
2.
Blood ; 112(13): 4884-94, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18780834

RESUMO

The transcription factor GATA-1 participates in programming the differentiation of multiple hematopoietic lineages. In megakaryopoiesis, loss of GATA-1 function produces complex developmental abnormalities and underlies the pathogenesis of megakaryocytic leukemia in Down syndrome. Its distinct functions in megakaryocyte and erythroid maturation remain incompletely understood. In this study, we identified functional and physical interaction of GATA-1 with components of the positive transcriptional elongation factor P-TEFb, a complex containing cyclin T1 and the cyclin-dependent kinase 9 (Cdk9). Megakaryocytic induction was associated with dynamic changes in endogenous P-TEFb composition, including recruitment of GATA-1 and dissociation of HEXIM1, a Cdk9 inhibitor. shRNA knockdowns and pharmacologic inhibition both confirmed contribution of Cdk9 activity to megakaryocytic differentiation. In mice with megakaryocytic GATA-1 deficiency, Cdk9 inhibition produced a fulminant but reversible megakaryoblastic disorder reminiscent of the transient myeloproliferative disorder of Down syndrome. P-TEFb has previously been implicated in promoting elongation of paused RNA polymerase II and in programming hypertrophic differentiation of cardiomyocytes. Our results offer evidence for P-TEFb cross-talk with GATA-1 in megakaryocytic differentiation, a program with parallels to cardiomyocyte hypertrophy.


Assuntos
Diferenciação Celular , Quinase 9 Dependente de Ciclina/fisiologia , Fator de Transcrição GATA1/metabolismo , Megacariócitos/citologia , Fator B de Elongação Transcricional Positiva/metabolismo , Receptor Cross-Talk , Animais , Células Cultivadas , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Síndrome de Down , Fator de Transcrição GATA1/genética , Humanos , Camundongos , Camundongos Knockout , Transtornos Mieloproliferativos
3.
Blood ; 101(5): 1744-51, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12393469

RESUMO

Coculture with stromal cells tends to maintain normal hematopoietic progenitors and their leukemic counterparts in an undifferentiated, proliferative state. An example of this effect is seen with megakaryocytic differentiation, wherein stromal contact renders many cell types refractory to potent induction stimuli. This inhibitory effect of stroma on megakaryocytic differentiation correlates with a blockade within hematopoietic cells of protein kinase C-epsilon (PKC-epsilon) up-regulation and of extracellular signal-regulated kinase/mitogen-activated protein (ERK/MAP) kinase activation, both of which have been implicated in promoting megakaryocytic differentiation. In this study K562DeltaRafER.5 cells, expressing an estradiol-responsive mutant of the protein kinase Raf-1, were used to determine the relevance and stage of ERK/MAPK pathway blockade by stromal contact. Activation of DeltaRafER by estradiol overrode stromal blockade of megakaryocytic differentiation, implicating the proximal stage of the ERK/MAPK pathway as a relevant control point. Because stromal contact blocked delayed but not early ERK activation, the small guanosine triphosphatase (GTPase) Rap1 was considered as a candidate inhibitory target. Activation assays confirmed that Rap1 underwent sustained activation as a result of megakaryocytic induction, as previously described. As with ERK activation, stromal contact selectively blocked delayed but not early Rap1 activation, having no effect on Ras activation. Enforced expression of either wild-type Rap1 or the GTPase (GAP) resistant mutant Rap1 V12 failed to override stromal inhibition, suggesting that the inhibitory mechanism does not involve GAP up-regulation but rather may target upstream guanine nucleotide exchange factor (GEF) complexes. Accordingly, coimmunoprecipitation demonstrated stromally induced alterations in a protein complex associated with c-Cbl, a scaffolding factor for Rap1-GEF complexes.


Assuntos
Células da Medula Óssea/fisiologia , Megacariócitos/citologia , Ubiquitina-Proteína Ligases , Proteínas rap1 de Ligação ao GTP/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Técnicas de Cocultura , Citoesqueleto/ultraestrutura , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Substâncias Macromoleculares , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Neoplasias/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-cbl , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Transdução de Sinais , Células Estromais/fisiologia , Proteínas rap1 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...