Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 282: 35-45, 2018 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-29673642

RESUMO

Triple negative breast cancer is an aggressive disease that accounts for at least 15% of breast cancer diagnoses, and a disproportionately high percentage of breast cancer related morbidity. Intensive research efforts are focused on the development of more efficacious treatments for this disease, for which therapeutic options remain limited. The high incidence of mutations in key DNA repair pathways in triple negative breast cancer results in increased sensitivity to DNA damaging agents, such as platinum-based chemotherapies. Hyperthermia has been successfully used in breast cancer treatment to sensitize tumors to radiation therapy and chemotherapy. It has also been used as a mechanism to trigger drug release from thermosensitive liposomes. In this study, mild hyperthermia is used to trigger release of cisplatin from thermosensitive liposomes in the vasculature of human triple negative breast cancer tumors implanted orthotopically in mice. This heat-triggered liposomal formulation of cisplatin resulted in significantly delayed tumor growth and improved overall survival compared to treatment with either non-thermosensitive liposomes containing cisplatin or free cisplatin, as was observed in two independent tumor models (i.e. MDA-MB-231 and MDA-MB-436). The in vitro sensitivity of the cell lines to cisplatin and hyperthermia alone and in combination was characterized extensively using enzymatic assays, clonogenic assays, and spheroid growth assays. Evaluation of correlations between the in vitro and in vivo results served to identify the in vitro approach that is most predictive of the effects of hyperthermia in vivo. Relative expression of several heat shock proteins and the DNA damage repair protein BRCA1 were assayed at baseline and in response to hyperthermia both in vitro and in vivo. Interestingly, delivery of cisplatin in thermosensitive liposomes in combination with hyperthermia resulted in the most significant tumor growth delay, relative to free cisplatin, in the less cisplatin-sensitive cell line (i.e. MDA-MB-231). This work demonstrates that thermosensitive cisplatin liposomes used in combination with hyperthermia offer a novel method for effective treatment of triple negative breast cancer.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Mama/irrigação sanguínea , Mama/efeitos dos fármacos , Mama/patologia , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Feminino , Humanos , Hipertermia Induzida/métodos , Lipossomos/química , Camundongos SCID , Neoplasias de Mama Triplo Negativas/patologia
2.
Photodiagnosis Photodyn Ther ; 18: 252-256, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28344047

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is an antitumour treatment that employs the combination of a photosensitive compound, oxygen and visible light. To improve the antitumour activity of PDT, the present study used the strategy of combining PDT with erlotinib (ERL), a drug frequently used in the treatment of epidermoid carcinoma. METHODS: An MTT cell viability assay was used to evaluate the cytotoxicity of PDT combined with ERL on A431 epidermoid carcinoma cells in vitro. This study evaluated the cytotoxicity of the following treatments: red laser irradiation (660nm) at different power densities (1.25-180J/cm2), the photosensitizer methylene blue (MB) at concentrations of 0.39-100µM, PDT (12.5µM MB and laser power densities from 1.25 to 180J/cm2), and PDT (12.5µM MB and a laser density of 120J/cm2) plus ERL (1µM). RESULTS: The laser power densities that were tested showed no cytotoxicity in A431 cells. MB showed a dose-dependent cytotoxicity. In PDT, an increase in the dose of light resulted in an increase in the cytotoxicity of MB. In addition, there was a sub-additive effect between PDT and ERL compared to the effect of each therapy alone. CONCLUSIONS: The sub-additive effect between PDT and ERL suggests that their combination may be an important strategy in the treatment of epidermoid carcinoma.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Quimiorradioterapia/métodos , Cloridrato de Erlotinib/administração & dosagem , Fotoquimioterapia/métodos , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada/métodos , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Fármacos Fotossensibilizantes/administração & dosagem , Doses de Radiação , Resultado do Tratamento
3.
Carbohydr Polym ; 156: 417-426, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27842841

RESUMO

This study aimed to compare two nanofiber drug delivery systems that were prepared with an electrospun process and have the potential to serve as adjuvants for the treatment of periodontal disease. The first system was composed of polycaprolactone loaded with tetracycline (TCN) and the second was composed of polycaprolactone loaded with tetracycline/ß-cyclodextrin (TCN:BCD). An antimicrobial diffusion test was performed for each of these sets of nanofibers with the microorganisms, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, both of which contribute to periodontal disease. In vitro release profiles were also obtained, and the nanofibers were characterized by thermal analysis, x-ray powder diffraction, infrared absorption spectroscopy, and scanning electron microscopy. Profiles of the TCN and TCN:BCD nanofibers showed that drug release occurred for up to 14days. However, the TCN:BCD nanofibers appeared to better protect and enhance the biological absorption of TCN due to the formation of a TCN:BCD inclusion complex.


Assuntos
Aggregatibacter/efeitos dos fármacos , Nanofibras/química , Porphyromonas/efeitos dos fármacos , Tetraciclina/química , Tetraciclina/farmacologia , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
4.
Colloids Surf B Biointerfaces ; 136: 248-55, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26402423

RESUMO

The objective of this study was to evaluate the in vivo anti-inflammatory angiogenesis activity and in vitro cytotoxicity on normal and cancer cell models of a drug delivery system consisting of poly(lactic-co-glycolic acid) nanofibers loaded with daunorubicin (PLGA-DNR) that were fabricated using an electrospinning process. The PLGA-DNR nanofibers were also characterized by thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and confocal fluorescence microscopy. In vitro release of DNR from the nanofibers and its corresponding mechanism were also evaluated. Sixty-five percent of the DNR was released in an initial burst over 8h, and by 1224 h, eighty-five percent of the DNR had been released. The Higuchi model yielded the best fit to the DNR release profile over the first 8h, and the corresponding data from 24 to 1224 h could be modeled using zero-order kinetics. The PLGA-DNR nanofibers exhibited a higher cytotoxicity to A431 cells than free DNR but a cytotoxicity similar to free DNR against fibroblast cells. A higher antiangiogenic effect of PLGA nanofibers was observed in the in vivo data when compared to free DNR, and no inflammatory potential was observed for the nanofibers.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Daunorrubicina/farmacologia , Ácido Láctico/química , Nanofibras , Ácido Poliglicólico/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Difração de Raios X
5.
Molecules ; 19(9): 13948-64, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25197932

RESUMO

Current procedures for the detection and identification of bacterial infections are laborious, time-consuming, and require a high workload and well-equipped laboratories. Therefore the work presented herein developed a simple, fast, and low cost method for bacterial detection based on hydroxyapatite nanoparticles with a nutritive mixture and the fluorogenic substrate. Calcium phosphate ceramic nanoparticles were characterized and integrated with a nutritive mixture for the early detection of bacteria by visual as well as fluorescence spectroscopy techniques. The composite was obtained by combining calcium phosphate nanoparticles (Ca:P ratio, 1.33:1) with a nutritive mixture of protein hydrolysates and carbon sources, which promote fast bacterial multiplication, and the fluorogenic substrate 4-methylumbellipheryl-ß-D-glucuronide (MUG). The composite had an average particle size of 173.2 nm and did not show antibacterial activity against Gram-negative or Gram-positive bacteria. After an Escherichia coli suspension was in contact with the composite for 60-90 min, fluorescence detected under UV light or by fluorescence spectrophotometer indicated the presence of bacteria. Intense fluorescence was observed after incubation for a maximum of 90 min. Thus, this calcium phosphate nanocomposite system may be useful as a model for the development of other nanoparticle composites for detection of early bacterial adhesion.


Assuntos
Cerâmica/química , Hidroxiapatitas/química , Nanocompostos/química , Antibacterianos/química , Antibacterianos/farmacologia , Infecções Bacterianas/diagnóstico , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Hidroxiapatitas/farmacologia , Limite de Detecção , Nanocompostos/ultraestrutura , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Espectrometria de Fluorescência , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
6.
Colloids Surf B Biointerfaces ; 118: 194-201, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24816509

RESUMO

Doxycycline is a semi-synthetic antibiotic commonly used for the treatment of many aerobic and anaerobic bacteria. It inhibits the activity of matrix metalloproteinases (MMPs) and affects cell proliferation. In this study, the structural and thermodynamic parameters of free DOX and a DOX/ßCD complex were investigated, as well as their interactions and effects on Staphylococcus aureus cells and cellular cytotoxicity. Complexation of DOX and ßCD was confirmed to be an enthalpy- and entropy-driven process, and a low equilibrium constant was obtained. Treatment of S. aureus with higher concentrations of DOX or DOX/ßCD resulted in an exponential decrease in S. aureus cell size, as well as a gradual neutralization of zeta potential. These thermodynamic profiles suggest that ion-pairing and hydrogen bonding interactions occur between DOX and the membrane of S. aureus. In addition, the adhesion of ßCD to the cell membrane via hydrogen bonding is hypothesized to mediate a synergistic effect which accounts for the higher activity of DOX/ßCD against S. aureus compared to pure DOX. Lower cytotoxicity and induction of osteoblast proliferation was also associated with DOX/ßCD compared with free DOX. These promising findings demonstrate the potential for DOX/ßCD to mediate antimicrobial activity at lower concentrations, and provides a strategy for the development of other antimicrobial formulations.


Assuntos
Membrana Celular/efeitos dos fármacos , Doxiciclina/química , Doxiciclina/farmacologia , Staphylococcus aureus/citologia , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Animais , Calorimetria , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Análise Diferencial Térmica , Hidrodinâmica , Luz , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Ratos Wistar , Espalhamento de Radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Eletricidade Estática , Termodinâmica , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...