Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 152(1): 55-70, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19889876

RESUMO

A role for differential glycoconjugation in the emission of phenylpropanoid volatiles from ripening tomato fruit (Solanum lycopersicum) upon fruit tissue disruption has been discovered in this study. Application of a multiinstrumental analytical platform for metabolic profiling of fruits from a diverse collection of tomato cultivars revealed that emission of three discriminatory phenylpropanoid volatiles, namely methyl salicylate, guaiacol, and eugenol, took place upon disruption of fruit tissue through cleavage of the corresponding glycoconjugates, identified putatively as hexose-pentosides. However, in certain genotypes, phenylpropanoid volatile emission was arrested due to the corresponding hexose-pentoside precursors having been converted into glycoconjugate species of a higher complexity: dihexose-pentosides and malonyl-dihexose-pentosides. This glycoside conversion was established to occur in tomato fruit during the later phases of fruit ripening and has consequently led to the inability of red fruits of these genotypes to emit key phenylpropanoid volatiles upon fruit tissue disruption. This principle of volatile emission regulation can pave the way to new strategies for controlling tomato fruit flavor and taste.


Assuntos
Frutas/metabolismo , Propanóis/química , Solanum lycopersicum/metabolismo , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Análise de Componente Principal , Propanóis/metabolismo , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...