Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136155

RESUMO

Lead (Pb2+) exposure during early life induces cognitive impairment, which was recently associated with an increase in brain kynurenic acid (KYNA), an antagonist of NMDA and alpha-7 nicotinic receptors. It has been described that N-acetylcysteine (NAC) favors an antioxidant environment and inhibits kynurenine aminotransferase II activity (KAT II, the main enzyme of KYNA production), leading to brain KYNA levels decrease and cognitive improvement. This study aimed to investigate whether the NAC modulation of the brain KYNA levels in mice ameliorated Pb2+-induced cognitive impairment. The dams were divided into four groups: Control, Pb2+, NAC, and Pb2++NAC, which were given drinking water or 500 ppm lead acetate in the drinking water ad libitum, from 0 to 23 postnatal days (PNDs). The NAC and Pb2++NAC groups were simultaneously fed NAC (350 mg/day) in their chow from 0 to 23 PNDs. At PND 60, the effect of the treatment with Pb2+ and in combination with NAC on learning and memory performance was evaluated. Immediately after behavioral evaluation, brain tissues were collected to assess the redox environment; KYNA and glutamate levels; and KAT II activity. The NAC treatment prevented the long-term memory deficit exhibited in the Pb2+ group. As expected, Pb2+ group showed redox environment alterations, fluctuations in glutamate levels, and an increase in KYNA levels, which were partially avoided by NAC co-administration. These results confirmed that the excessive KYNA levels induced by Pb2+ were involved in the onset of cognitive impairment and could be successfully prevented by NAC treatment. NAC could be a tool for testing in scenarios in which KYNA levels are associated with the induction of cognitive impairment.

2.
Cells ; 12(21)2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37947615

RESUMO

Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.


Assuntos
Intoxicação por Arsênico , Arsênio , Água Potável , Síndromes Neurotóxicas , Humanos , Arsênio/toxicidade , Intoxicação por Arsênico/complicações , Encéfalo , Cognição
3.
Cells ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497079

RESUMO

The activation of the maternal immune system by a prenatal infection is considered a risk factor for developing psychiatric disorders in the offspring. Toxoplasma gondii is one of the pathogenic infections associated with schizophrenia. Recent studies have shown an association between high levels of IgG anti-T. gondii from mothers and their neonates, with a higher risk of developing schizophrenia. The absence of the parasite and the levels of IgGs found in the early stages of life suggest a transplacental transfer of the anti-T. gondii IgG antibodies, which could bind fetal brain structures by molecular mimicry and induce alterations in neurodevelopment. This study aimed to determine the maternal pathogenic antibodies formation that led to behavioral impairment on the progeny of rats immunized with T. gondii. Female rats were immunized prior to gestation with T. gondii lysate (3 times/once per week). The anti-T. gondii IgG levels were determined in the serum of pregestational exposed females' previous mating. After this, locomotor activity, cognitive and social tests were performed. Cortical neurotransmitter levels for dopamine and glutamate were evaluated at 60 PND in the progeny of rats immunized before gestation (Pregestational group). The maternal pathogenic antibodies were evidenced by their binding to fetal brain mimotopes in the Pregestational group and the reactivity of the serum containing anti-T. gondii IgG was tested in control fetal brains (non-immunized). These results showed that the Pregestational group presented impairment in short and long-term memory, hypoactivity and alteration in social behavior, which was also associated with a decrease in cortical glutamate and dopamine levels. We also found the IgG antibodies bound to brain mimotopes in fetuses from females immunized with T. gondii, as well as observing a strong reactivity of the serum females immunized for fetal brain structures of fetuses from unimmunized mothers. Our results suggest that the exposure to T. gondii before gestation produced maternal pathogenic antibodies that can recognize fetal brain mimotopes and lead to neurochemical and behavioral alterations in the offspring.


Assuntos
Dopamina , Toxoplasma , Gravidez , Animais , Feminino , Ratos , Ácido Glutâmico , Imunoglobulina G , Encéfalo
5.
Pharmacopsychiatry ; 55(2): 73-86, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34911124

RESUMO

This international guideline proposes improving clozapine package inserts worldwide by using ancestry-based dosing and titration. Adverse drug reaction (ADR) databases suggest that clozapine is the third most toxic drug in the United States (US), and it produces four times higher worldwide pneumonia mortality than that by agranulocytosis or myocarditis. For trough steady-state clozapine serum concentrations, the therapeutic reference range is narrow, from 350 to 600 ng/mL with the potential for toxicity and ADRs as concentrations increase. Clozapine is mainly metabolized by CYP1A2 (female non-smokers, the lowest dose; male smokers, the highest dose). Poor metabolizer status through phenotypic conversion is associated with co-prescription of inhibitors (including oral contraceptives and valproate), obesity, or inflammation with C-reactive protein (CRP) elevations. The Asian population (Pakistan to Japan) or the Americas' original inhabitants have lower CYP1A2 activity and require lower clozapine doses to reach concentrations of 350 ng/mL. In the US, daily doses of 300-600 mg/day are recommended. Slow personalized titration may prevent early ADRs (including syncope, myocarditis, and pneumonia). This guideline defines six personalized titration schedules for inpatients: 1) ancestry from Asia or the original people from the Americas with lower metabolism (obesity or valproate) needing minimum therapeutic dosages of 75-150 mg/day, 2) ancestry from Asia or the original people from the Americas with average metabolism needing 175-300 mg/day, 3) European/Western Asian ancestry with lower metabolism (obesity or valproate) needing 100-200 mg/day, 4) European/Western Asian ancestry with average metabolism needing 250-400 mg/day, 5) in the US with ancestries other than from Asia or the original people from the Americas with lower clozapine metabolism (obesity or valproate) needing 150-300 mg/day, and 6) in the US with ancestries other than from Asia or the original people from the Americas with average clozapine metabolism needing 300-600 mg/day. Baseline and weekly CRP monitoring for at least four weeks is required to identify any inflammation, including inflammation secondary to clozapine rapid titration.


Assuntos
Antipsicóticos , Clozapina , Adulto , Antipsicóticos/efeitos adversos , Povo Asiático , Proteína C-Reativa , Clozapina/efeitos adversos , Feminino , Humanos , Masculino , Ácido Valproico/efeitos adversos
6.
J Immunol Res ; 2021: 3412906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557553

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor with a high mortality rate. The current treatment consists of surgical resection, radiation, and chemotherapy; however, the median survival rate is only 12-18 months despite these alternatives, highlighting the urgent need to find new strategies. The heterogeneity of GBM makes this tumor difficult to treat, and the immunotherapies result in an attractive approach to modulate the antitumoral immune responses favoring the tumor eradication. The immunotherapies for GMB including monoclonal antibodies, checkpoint inhibitors, vaccines, and oncolytic viruses, among others, have shown favorable results alone or as a multimodal treatment. In this review, we summarize and discuss promising immunotherapies for GBM currently under preclinical investigation as well as in clinical trials.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imunoterapia , Animais , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/uso terapêutico , Ensaios Clínicos como Assunto , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças/imunologia , Glioblastoma/etiologia , Glioblastoma/metabolismo , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Modelos Animais , Terapia de Alvo Molecular , Terapia Viral Oncolítica/métodos , Resultado do Tratamento
9.
Cells ; 10(8)2021 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-34440798

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. The enzyme indoleamine-2,3-dioxygenase (IDO), which participates in the rate-limiting step of tryptophan catabolism through the kynurenine pathway (KP), is associated with poor prognosis in patients with GBM. The metabolites produced after tryptophan oxidation have immunomodulatory properties that can support the immunosuppressor environment. In this study, mRNA expression, protein expression, and activity of the enzyme kynurenine monooxygenase (KMO) were analyzed in GBM cell lines (A172, LN-18, U87, U373) and patient-derived astrocytoma samples. KMO mRNA expression was assessed by real-time RT-qPCR, KMO protein expression was evaluated by flow cytometry and immunofluorescence, and KMO activity was determined by quantifying 3-hydroxykynurenine by HPLC. Heterogenous patterns of both KMO expression and activity were observed among the GBM cell lines, with the A172 cell line showing the highest KMO expression and activity. Higher KMO mRNA expression was observed in glioma samples than in patients diagnosed with only a neurological disease; high KMO mRNA expression was also observed when using samples from patients with GBM in the TCGA program. The KMO protein expression was localized in GFAP+ cells in tumor tissue. These results suggest that KMO is a relevant target to be explored in glioma since it might play a role in supporting tumor metabolism and immune suppression.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Quinurenina 3-Mono-Oxigenase/genética , Adulto , Astrocitoma/enzimologia , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Feminino , Glioma/enzimologia , Glioma/genética , Humanos , Estimativa de Kaplan-Meier , Cinurenina/análogos & derivados , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
10.
Toxics ; 9(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525464

RESUMO

Lead (Pb) is considered a strong environmental toxin with human health repercussions. Due to its widespread use and the number of people potentially exposed to different sources of this heavy metal, Pb intoxication is recognized as a public health problem in many countries. Exposure to Pb can occur through ingestion, inhalation, dermal, and transplacental routes. The magnitude of its effects depends on several toxicity conditions: lead speciation, doses, time, and age of exposure, among others. It has been demonstrated that Pb exposure induces stronger effects during early life. The central nervous system is especially vulnerable to Pb toxicity; Pb exposure is linked to cognitive impairment, executive function alterations, abnormal social behavior, and fine motor control perturbations. This review aims to provide a general view of the cognitive consequences associated with Pb exposure during early life as well as during adulthood. Additionally, it describes the neurotoxic mechanisms associated with cognitive impairment induced by Pb, which include neurochemical, molecular, and morphological changes that jointly could have a synergic effect on the cognitive performance.

11.
Antioxidants (Basel) ; 10(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498402

RESUMO

The tryptophan (Trp) metabolite kynurenic acid (KYNA) is an α7-nicotinic and N-methyl-d-aspartate receptor antagonist. Elevated brain KYNA levels are commonly seen in psychiatric disorders and neurodegenerative diseases and may be related to cognitive impairments. Recently, we showed that N-acetylcysteine (NAC) inhibits kynurenine aminotransferase II (KAT II), KYNA's key biosynthetic enzyme, and reduces KYNA neosynthesis in rats in vivo. In this study, we examined if repeated systemic administration of NAC influences brain KYNA and cognitive performance in mice. Animals received NAC (100 mg/kg, i.p.) daily for 7 days. Redox markers, KYNA levels, and KAT II activity were determined in the brain. We also assessed the effect of repeated NAC treatment on Trp catabolism using brain tissue slices ex vivo. Finally, learning and memory was evaluated with and without an acute challenge with KYNA's bioprecursor L-kynurenine (Kyn; 100 mg/kg). Subchronic NAC administration protected against an acute pro-oxidant challenge, decreased KYNA levels, and lowered KAT II activity and improved memory both under basal conditions and after acute Kyn treatment. In tissue slices from these mice, KYNA neosynthesis from Trp or Kyn was reduced. Together, our data indicate that prolonged treatment with NAC may enhance memory at least in part by reducing brain KYNA levels.

12.
Antioxidants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35052535

RESUMO

L-kynurenine (L-KYN) is an endogenous metabolite, that has been used as a neuroprotective strategy in experimental models. The protective effects of L-KYN have been attributed mainly to kynurenic acid (KYNA). However, considering that L-KYN is prone to oxidation, this redox property may play a substantial role in its protective effects. The aim of this work was to characterize the potential impact of the redox properties of L-KYN, in both synthetic and biological systems. First, we determined whether L-KYN scavenges reactive oxygen species (ROS) and prevents DNA and protein oxidative degradation in synthetic systems. The effect of L-KYN and KYNA (0.1-100 µM) on redox markers (ROS production, lipoperoxidation and cellular function) was compared in rat brain homogenates when exposed to FeSO4 (10 µM). Then, the effect of L-KYN administration (75 mg/kg/day for 5 days) on the GSH content and the enzymatic activity of glutathione reductase (GR) and glutathione peroxidase (GPx) was determined in rat brain tissue. Finally, brain homogenates from rats pretreated with L-KYN were exposed to pro-oxidants and oxidative markers were evaluated. The results show that L-KYN is an efficient scavenger of ●OH and ONOO-, but not O2●- or H2O2 and that it prevents DNA and protein oxidative degradation in synthetic systems. L-KYN diminishes the oxidative effect induced by FeSO4 on brain homogenates at lower concentrations (1 µM) when compared to KYNA (100 µM). Furthermore, the sub-chronic administration of L-KYN increased the GSH content and the activity of both GR and GPx, and also prevented the oxidative damage induced by the ex vivo exposure to pro-oxidants. Altogether, these findings strongly suggest that L-KYN can be considered as a potential endogenous antioxidant.

13.
Sci Rep ; 10(1): 3184, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081969

RESUMO

The immature brain is especially vulnerable to lead (Pb2+) toxicity, which is considered an environmental neurotoxin. Pb2+ exposure during development compromises the cognitive and behavioral attributes which persist even later in adulthood, but the mechanisms involved in this effect are still unknown. On the other hand, the kynurenine pathway metabolites are modulators of different receptors and neurotransmitters related to cognition; specifically, high kynurenic acid levels has been involved with cognitive impairment, including deficits in spatial working memory and attention process. The aim of this study was to evaluate the relationship between the neurocognitive impairment induced by Pb2+ toxicity and the kynurenine pathway. The dams were divided in control group and Pb2+ group, which were given tap water or 500 ppm of lead acetate in drinking water ad libitum, respectively, from 0 to 23 postnatal day (PND). The poison was withdrawn, and tap water was given until 60 PND of the progeny. The locomotor activity in open field, redox environment, cellular function, kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) levels as well as kynurenine aminotransferase (KAT) and kynurenine monooxygenase (KMO) activities were evaluated at both 23 and 60 PND. Additionally, learning and memory through buried food location test and expression of KAT and KMO, and cellular damage were evaluated at 60 PND. Pb2+ group showed redox environment alterations, cellular dysfunction and KYNA and 3-HK levels increased. No changes were observed in KAT activity. KMO activity increased at 23 PND and decreased at 60 PND. No changes in KAT and KMO expression in control and Pb2+ group were observed, however the number of positive cells expressing KMO and KAT increased in relation to control, which correlated with the loss of neuronal population. Cognitive impairment was observed in Pb2+ group which was correlated with KYNA levels. These results suggest that the increase in KYNA levels could be a mechanism by which Pb2+ induces cognitive impairment in adult mice, hence the modulation of kynurenine pathway represents a potential target to improve behavioural alterations produced by this environmental toxin.


Assuntos
Disfunção Cognitiva/metabolismo , Cinurenina/metabolismo , Lactação , Chumbo/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Exposição Ambiental , Feminino , Lactação/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Oxirredução
14.
Oxid Med Cell Longev ; 2017: 2371895, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28831293

RESUMO

Copper is an integral component of various enzymes, necessary for mitochondrial respiration and other biological functions. Excess copper is related with neurodegenerative diseases as Alzheimer and is able to modify cellular redox environment, influencing its functions, signaling, and catabolic pathways. Tryptophan degradation through kynurenine pathway produces some metabolites with redox properties as 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HANA). The imbalance in their production is related with some neuropathologies, where the common factors are oxidative stress, inflammation, and cell death. This study evaluated the effect of these kynurenines on the copper toxicity in astrocyte cultures. It assessed the CuSO4 effect, alone and in combination with 3-HK or 3-HANA on MTT reduction, ROS production, mitochondrial membrane potential (MMP), GHS levels, and cell viability in primary cultured astrocytes. Also, the chelating copper effect of 3-HK and 3-HANA was evaluated. The results showed that CuSO4 decreased MTT reduction, MMP, and GSH levels while ROS production and cell death are increasing. Coincubation with 3-HK and 3-HANA enhances the toxic effect of copper in all the markers tested except in ROS production, which was abolished by these kynurenines. Data suggest that 3-HK and 3-HANA increased copper toxicity in an independent manner to ROS production.


Assuntos
Ácido 3-Hidroxiantranílico/metabolismo , Astrócitos/metabolismo , Cobre/química , Cinurenina/análogos & derivados , Animais , Cinurenina/metabolismo , Ratos
15.
Front Immunol ; 7: 156, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199982

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive neoplasia, prognosis remains dismal, and current therapy is mostly palliative. There are no known risk factors associated with gliomagenesis; however, it is well established that chronic inflammation in brain tissue induces oxidative stress in astrocytes and microglia. High quantities of reactive species of oxygen into the cells can react with several macromolecules, including chromosomal and mitochondrial DNA, leading to damage and malfunction of DNA repair enzymes. These changes bring genetic instability and abnormal metabolic processes, favoring oxidative environment and increase rate of cell proliferation. In GBM, a high metabolic rate and increased basal levels of reactive oxygen species play an important role as chemical mediators in the regulation of signal transduction, protecting malignant cells from apoptosis, thus creating an immunosuppressive environment. New redox therapeutics could reduce oxidative stress preventing cellular damage and high mutation rate accompanied by chromosomal instability, reducing the immunosuppressive environment. In addition, therapies directed to modulate redox rate reduce resistance and moderate the high rate of cell proliferation, favoring apoptosis of tumoral cells. This review describes the redox status in GBM, and how this imbalance could promote gliomagenesis through genomic and mitochondrial DNA damage, inducing the pro-oxidant and proinflammatory environment involved in tumor cell proliferation, resistance, and immune escape. In addition, some therapeutic agents that modulate redox status and might be advantageous in therapy against GBM are described.

16.
Biomed Chromatogr ; 30(6): 933-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26433002

RESUMO

Carbamazepine is an antiepileptic drug widely used for the treatment of epilepsy. In the National Institute of Neurology, monitoring has been performed using the technique chemiluminescent microparticle immunoassay (CMIA) in an automated way during the last five years. The aim of this study was to develop a simple and rapid HPLC analytical method coupled to DAD-UV detection for the determination of plasma concentrations of carbamazepine and compare its feasibility with those used in routine analysis. The developed HPLC method was fully validated and the applicability of the proposed method was verified through the analysis of plasma samples of patients and later compared with the quantification of the same plasma samples with the CMIA method. The limit of quantification obtained was 0.5 µg/mL. The mean value for recovery was 99.05% and the coefficient of variation (CV) was 5.6%. The precision and accuracy of this method were within the acceptable limits; inter- and intraday CV values were <10%. The correlation between the CMIA method and the developed HPLC method was very good (r ≈ 0.999). A Bland-Altman plot showed no significant bias between the results. The HPLC-DAD method may be an alternative to determine and monitoring the carbamazepine levels in human plasma or serum. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Anticonvulsivantes/sangue , Carbamazepina/sangue , Cromatografia Líquida de Alta Pressão/métodos , Imunoensaio/métodos , Humanos , Limite de Detecção , Luminescência , Reprodutibilidade dos Testes
17.
Front Cell Neurosci ; 9: 178, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26041992

RESUMO

Kynurenic acid (KYNA), an astrocyte-derived, endogenous antagonist of α7 nicotinic acetylcholine and excitatory amino acid receptors, regulates glutamatergic, GABAergic, cholinergic and dopaminergic neurotransmission in several regions of the rodent brain. Synthesis of KYNA in the brain and elsewhere is generally attributed to the enzymatic conversion of L-kynurenine (L-KYN) by kynurenine aminotransferases (KATs). However, alternative routes, including KYNA formation from D-kynurenine (D-KYN) by D-amino acid oxidase (DAAO) and the direct transformation of kynurenine to KYNA by reactive oxygen species (ROS), have been demonstrated in the rat brain. Using the rat cerebellum, a region of low KAT activity and high DAAO activity, the present experiments were designed to examine KYNA production from L-KYN or D-KYN by KAT and DAAO, respectively, and to investigate the effect of ROS on KYNA synthesis. In chemical combinatorial systems, both L-KYN and D-KYN interacted directly with peroxynitrite (ONOO(-)) and hydroxyl radicals (OH•), resulting in the formation of KYNA. In tissue homogenates, the non-specific KAT inhibitor aminooxyacetic acid (AOAA; 1 mM) reduced KYNA production from L-KYN and D-KYN by 85.1 ± 1.7% and 27.1 ± 4.5%, respectively. Addition of DAAO inhibitors (benzoic acid, kojic acid or 3-methylpyrazole-5-carboxylic acid; 5 µM each) attenuated KYNA formation from L-KYN and D-KYN by ~35% and ~66%, respectively. ONOO(-) (25 µM) potentiated KYNA production from both L-KYN and D-KYN, and these effects were reduced by DAAO inhibition. AOAA attenuated KYNA production from L-KYN + ONOO(-) but not from D-KYN + ONOO(-). In vivo, extracellular KYNA levels increased rapidly after perfusion of ONOO(-) and, more prominently, after subsequent perfusion with L-KYN or D-KYN (100 µM). Taken together, these results suggest that different mechanisms are involved in KYNA production in the rat cerebellum, and that, specifically, DAAO and ROS can function as alternative routes for KYNA production.

18.
J Neurosci Res ; 93(9): 1423-33, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26013807

RESUMO

L-kynurenine (Kyn) is a key element of tryptophan metabolism; it is enzymatically converted by kynurenine aminotransferase II (KAT II) to kynurenic acid (KYNA), which acts as an antagonist to the NMDA receptor-glycine site. Kyn is also an endogenous ligand of the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of a diverse set of genes. KYNA levels are reduced in several regions of the brain of Huntington's disease (HD) patients. The present work uses an AhR-null mouse and age-matched wild-type mice to determine the effect of the absence of AhR on KYNA availability. We found that, in AhR-null mice, there is an increase of KYNA levels in specific brain areas associated with higher expression of KAT II. Moreover, we induced an excitotoxic insult by intrastriatal administration of quinolinic acid, a biochemical model of HD, in both AhR-null and wild-type mice to evaluate the neurological damage as well as the oxidative stress caused by the lesion. The present work demonstrates that, in specific brain regions of AhR-null mice, the levels of KYNA are increased and that this induces a neuroprotective effect against neurotoxic insults. Moreover, AhR-null mice also show improved motor performance in the rotarod test, indicating a constitutive protection of striatal tissue.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Encéfalo/metabolismo , Regulação da Expressão Gênica/genética , Ácido Cinurênico/metabolismo , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo/genética , Receptores de Hidrocarboneto Arílico/deficiência , Acetiltransferases/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Glutamato Descarboxilase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Quinolínico/metabolismo , Ácido Quinolínico/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Triptofano/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
Oxid Med Cell Longev ; 2014: 646909, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24693337

RESUMO

The kynurenine pathway (KP) is the main route of tryptophan degradation whose final product is NAD(+). The metabolism of tryptophan can be altered in ageing and with neurodegenerative process, leading to decreased biosynthesis of nicotinamide. This fact is very relevant considering that tryptophan is the major source of body stores of the nicotinamide-containing NAD(+) coenzymes, which is involved in almost all the bioenergetic and biosynthetic metabolism. Recently, it has been proposed that endogenous tryptophan and its metabolites can interact and/or produce reactive oxygen species in tissues and cells. This subject is of great importance due to the fact that oxidative stress, alterations in KP metabolites, energetic deficit, cell death, and inflammatory events may converge each other to enter into a feedback cycle where each one depends on the other to exert synergistic actions among them. It is worth mentioning that all these factors have been described in aging and in neurodegenerative processes; however, has so far no one established any direct link between alterations in KP and these factors. In this review, we describe each kynurenine remarking their redox properties, their effects in experimental models, their alterations in the aging process.


Assuntos
Envelhecimento/metabolismo , Encefalopatias/metabolismo , Cinurenina/metabolismo , Fármacos Neuroprotetores/metabolismo , Animais , Humanos , Redes e Vias Metabólicas , Oxirredução
20.
Arzneimittelforschung ; 61(6): 335-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21827043

RESUMO

The aim of the present study was to determine the prescribing practice for clozapine (CAS 5786-21-0) as well as the plasma levels of clozapine and its main metabolite norclozapine (CAS 6104-71-8) in Mexican patients. A prospective study was performed in 69 in and out psychotic patients taking clozapine. Blood samples were taken at steady state. Plasma concentrations of clozapine and norclozapine were determined by HPLC. The results showed that the mean daily dose administered was 250 mg/d. Plasma levels showed a large interindividual variability. Mean plasma levels were 411.3 +/- 328.12 ng/mL, for clozapine and 172.0 +/- 129.9 ng/mL for norclozapine. When data were compared with those reported in other populations, it was found that although the dose was lower than that reported in Caucasians, the plasma levels were similar. As a result, the predictive models for the estimation of clozapine concentration in Caucasians were not appropriate for application in Mexican patients. The findings suggest ethnic differences in the ratio dose/plasma levels of clozapine in Mexican patients. Further studies are required to expand the observations.


Assuntos
Antipsicóticos/sangue , Clozapina/análogos & derivados , Esquizofrenia/sangue , Adulto , Idoso , Antipsicóticos/efeitos adversos , Antipsicóticos/farmacocinética , Cromatografia Líquida de Alta Pressão , Clozapina/efeitos adversos , Clozapina/sangue , Clozapina/farmacocinética , Monitoramento de Medicamentos , Etnicidade , Feminino , Humanos , Masculino , México , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...