Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 42(18): 2815-2822, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31920183

RESUMO

Metronidazole is potentially carcinogenic to humans and it has been detected in wastewaters. The Wastewater Treatment Plants using biological processes have been highly impacted by the emergent compounds of recalcitrant type, and the knowledge about that issue is quite relevant. Therefore, this paper was focused on how metronidazole influences the kinetics and metabolic behaviour of nitrification and heterotrophic activity on activated sludge in batch cultures. Eight concentrations of metronidazole in the range of 5-100 mg/L were evaluated, in the presence of 2109 ± 129 mg VSS/L. The increment of initial metronidazole concentration caused a decline on COD and ammonium removal efficiencies, nitrate production yields, as well as in the substrate-specific consumption rates. Metronidazole (MDZ) had a greater impact on heterotrophic activity than nitrifying activity; also, it had a greater inhibitory effect on nitrite oxidation than ammonium oxidation. The activated sludge was not able to biotransform metronidazole; however, the azole compound significantly affected the physiology of it. The inhibition of ammonium oxidation was non-competitive (qmax = 120 mg NH4+-N consumed/gVSS-d, and Ki = 41.5 mg MDZ/L) and the initial metronidazole concentration that inhibited 50% of nitrifying activity (IC50) was 43 mg MDZ/L.


Assuntos
Compostos de Amônio , Esgotos , Reatores Biológicos , Humanos , Metronidazol , Nitrificação , Nitritos , Águas Residuárias
2.
Bioresour Technol ; 102(3): 3623-5, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21094042

RESUMO

A nitrifying continuous stirred tank reactor was used as multipurpose bioreactor and it was operated for 325 days at 220 mg NH(4)(+)-N/Ld, 89 mg p-cresol-C /Ld and 36-76 mg S(2-)/Ld. The bioreactor was fed in sequential way, firstly with ammonium, achieving a consumption efficiency of 89%, with a nitrate yield of 0.99. Afterward, p-cresol was fed, achieving ammonium and p-cresol consumption efficiencies of 95% and 100%, respectively. The nitrate yield was higher and no aromatic intermediaries from p-cresol were detected. Finally sulfide was fed and the consumption efficiencies for all substrates were of 100%, being nitrate, HCO(3)(-) and sulfate the end products. The kinetic results showed that biological sulfide consumption was 13-fold faster than the chemical oxidation. This is the first time that a nitrifying reactor can be used for multiple purposes and also for the simultaneous removal of ammonium, sulfide and p-cresol in one step.


Assuntos
Reatores Biológicos/microbiologia , Cresóis/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Esgotos/microbiologia , Sulfetos/metabolismo , Desenho de Equipamento , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...