Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 1017305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311415

RESUMO

Cardiac troponin I (cTnI) is a biomarker widely related to acute myocardial infarction (AMI), one of the leading causes of death around the world. Point-of-care testing (POCT) of cTnI not only demands a short turnaround time for its detection but the highest accuracy levels to set expeditious and adequate clinical decisions. The analytical technique Surface-enhanced Raman spectroscopy (SERS) possesses several properties that tailor to the POCT format, such as its flexibility to couple with rapid assay platforms like microfluidics and paper-based immunoassays. Here, we analyze the strategies used for the detection of cTnI by SERS considering POCT requirements. From the detection ranges reported in the reviewed literature, we suggest the diseases other than AMI that could be diagnosed with this technique. For this, a section with information about cardiac and non-cardiac diseases with cTnI release, including their release kinetics or cut-off values are presented. Likewise, POCT features, the use of SERS as a POCT technique, and the biochemistry of cTnI are discussed. The information provided in this review allowed the identification of strengths and lacks of the available SERS-based point-of-care tests for cTnI and the disclosing of requirements for future assays design.

2.
Biosensors (Basel) ; 11(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670852

RESUMO

The diagnosis of respiratory viruses of zoonotic origin (RVsZO) such as influenza and coronaviruses in humans is crucial, because their spread and pandemic threat are the highest. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique with promising impact for the point-of-care diagnosis of viruses. It has been applied to a variety of influenza A virus subtypes, such as the H1N1 and the novel coronavirus SARS-CoV-2. In this work, a review of the strategies used for the detection of RVsZO by SERS is presented. In addition, relevant information about the SERS technique, anthropozoonosis, and RVsZO is provided for a better understanding of the theme. The direct identification is based on trapping the viruses within the interstices of plasmonic nanoparticles and recording the SERS signal from gene fragments or membrane proteins. Quantitative mono- and multiplexed assays have been achieved following an indirect format through a SERS-based sandwich immunoassay. Based on this review, the development of multiplex assays that incorporate the detection of RVsZO together with their specific biomarkers and/or secondary disease biomarkers resulting from the infection progress would be desirable. These configurations could be used as a double confirmation or to evaluate the health condition of the patient.


Assuntos
COVID-19/diagnóstico , Imunoensaio/métodos , Vírus da Influenza A/isolamento & purificação , Influenza Humana/diagnóstico , SARS-CoV-2/isolamento & purificação , Análise Espectral Raman/métodos , Teste para COVID-19/instrumentação , Teste para COVID-19/métodos , Desenho de Equipamento , Humanos , Imunoensaio/instrumentação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Análise Espectral Raman/instrumentação
3.
Front Chem ; 8: 612076, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392153

RESUMO

The indirect determination of the most used herbicide worldwide, glyphosate, was achieved by the SERS technique using hemin chloride as the reporter molecule. An incubation process between hemin and glyphosate solutions was required to obtain a reproducible Raman signal on SERS substrates consisting of silicon decorated with Ag nanoparticles (Si-AgNPs). At 780 nm of excitation wavelength, SERS spectra from hemin solutions do not show extra bands in the presence of glyphosate. However, the hemin bands increase in intensity as a function of glyphosate concentration. This allows the quantification of the herbicide using as marker band the signal associated with the ring breathing mode of pyridine at 745 cm-1. The linear range was from 1 × 10-10 to 1 × 10-5 M and the limit of detection (LOD) was 9.59 × 10-12 M. This methodology was successfully applied to the quantification of the herbicide in honey. From Raman experiments with and without silver nanoparticles, it was possible to state that the hemin is the species responsible for the absorption in the absence or the presence of the herbicide via vinyl groups. Likewise, when the glyphosate concentration increases, a subtle increase occurs in the planar orientation of the vinyl group at position 2 in the porphyrin ring of hemin over the silver surface, favoring the reduction of the molecule. The total Raman signal of the hemin-glyphosate incubated solutions includes a maximized electromagnetic contribution by the use of the appropriate laser excitation, and chemical contributions related to charge transfer between silver and hemin, and from resonance properties of Raman scattering of hemin. Incubation of the reporter molecule with the analyte before the conjugation with the SERS substrate has not been explored before and could be extrapolated to other reporter-analyte systems that depend on a binding equilibrium process.

4.
Artigo em Inglês | MEDLINE | ID: mdl-27901630

RESUMO

Because of the intensive use of pharmaceutical substances in human life, studies on the detection of these chemical compounds and their metabolites as pollutants in water bodies are continuously reported. Some pharmaceutical agents are associated with adverse effects to aquatic life, even at very low concentrations (ng L-1 to µg L-1). For instance, the presence of antibiotics and hormones has been associated with increasing proliferation of antibiotic resistant pathogens and feminization and masculinization of some aquatic organisms. Currently, new attempts are being made to minimize or fully remove these types of pollutants from aquatic systems to protect the environment and human health. In this regard, physicochemical and biological treatments are among the most promising technologies for the treatment of wastewater containing pharmaceutical pollutants. These treatments are green alternatives for the degradation of hazardous organic compounds into nontoxic by-products. Here, we review some of the physicochemical and biological treatment methods used for the removal of the most extensively used antibiotics and hormones. Enzymatic oxidation, photocatalysis and electrochemical oxidation are described in terms of the aforementioned pharmaceutically active compounds (PhACs). The use of membrane technologies to separate different groups of antibiotics and hormones prior to biologic or physicochemical treatment methods is also addressed.


Assuntos
Antibacterianos/química , Preparações Farmacêuticas/química , Águas Residuárias , Poluentes Químicos da Água/química , Purificação da Água/métodos , Humanos , Oxirredução
5.
Chem Commun (Camb) ; (7): 898-900, 2005 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-15700074

RESUMO

Gold electrodes, previously prepared with surface anchored PAMAM dendrimers, were further modified with a Ni-containing tetraazamacrocycle resulting in a novel electrocatalytic material which proved to be particularly efficient for the electrochemical oxidation of methanol in basic aqueous medium.


Assuntos
Dendrímeros/química , Membranas Artificiais , Metanol/química , Níquel/química , Compostos Organometálicos/química , Poliaminas/química , Catálise , Eletroquímica , Estrutura Molecular , Oxirredução , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...