Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
BMC Med Res Methodol ; 23(1): 248, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872541

RESUMO

INTRODUCTION: Causal inference helps researchers and policy-makers to evaluate public health interventions. When comparing interventions or public health programs by leveraging observational sensitive individual-level data from populations crossing jurisdictional borders, a federated approach (as opposed to a pooling data approach) can be used. Approaching causal inference by re-using routinely collected observational data across different regions in a federated manner, is challenging and guidance is currently lacking. With the aim of filling this gap and allowing a rapid response in the case of a next pandemic, a methodological framework to develop studies attempting causal inference using federated cross-national sensitive observational data, is described and showcased within the European BeYond-COVID project. METHODS: A framework for approaching federated causal inference by re-using routinely collected observational data across different regions, based on principles of legal, organizational, semantic and technical interoperability, is proposed. The framework includes step-by-step guidance, from defining a research question, to establishing a causal model, identifying and specifying data requirements in a common data model, generating synthetic data, and developing an interoperable and reproducible analytical pipeline for distributed deployment. The conceptual and instrumental phase of the framework was demonstrated and an analytical pipeline implementing federated causal inference was prototyped using open-source software in preparation for the assessment of real-world effectiveness of SARS-CoV-2 primary vaccination in preventing infection in populations spanning different countries, integrating a data quality assessment, imputation of missing values, matching of exposed to unexposed individuals based on confounders identified in the causal model and a survival analysis within the matched population. RESULTS: The conceptual and instrumental phase of the proposed methodological framework was successfully demonstrated within the BY-COVID project. Different Findable, Accessible, Interoperable and Reusable (FAIR) research objects were produced, such as a study protocol, a data management plan, a common data model, a synthetic dataset and an interoperable analytical pipeline. CONCLUSIONS: The framework provides a systematic approach to address federated cross-national policy-relevant causal research questions based on sensitive population, health and care data in a privacy-preserving and interoperable way. The methodology and derived research objects can be re-used and contribute to pandemic preparedness.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Eficácia de Vacinas , Causalidade
3.
Arch Public Health ; 79(1): 221, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34879872

RESUMO

BACKGROUND: Information for Action! is a Joint Action (JA-InfAct) on Health Information promoted by the EU Member States and funded by the European Commission within the Third EU Health Programme (2014-2020) to create and develop solid sustainable infrastructure on EU health information. The main objective of this the JA-InfAct is to build an EU health information system infrastructure and strengthen its core elements by a) establishing a sustainable research infrastructure to support population health and health system performance assessment, b) enhancing the European health information and knowledge bases, as well as health information research capacities to reduce health information inequalities, and c) supporting health information interoperability and innovative health information tools and data sources. METHODS: Following a federated analysis approach, JA-InfAct developed an ad hoc federated infrastructure based on distributing a well-defined process-mining analysis methodology to be deployed at each participating partners' systems to reproduce the analysis and pool the aggregated results from the analyses. To overcome the legal interoperability issues on international data sharing, data linkage and management, partners (EU regions) participating in the case studies worked coordinately to query their real-world healthcare data sources complying with a common data model, executed the process-mining analysis pipeline on their premises, and shared the results enabling international comparison and the identification of best practices on stroke care. RESULTS: The ad hoc federated infrastructure was designed and built upon open source technologies, providing partners with the capacity to exploit their data and generate dashboards exploring the stroke care pathways. These dashboards can be shared among the participating partners or to a coordination hub without legal issues, enabling the comparative evaluation of the caregiving activities for acute stroke across regions. Nonetheless, the approach is not free of a number of challenges that have been solved, and new challenges that should be addressed in the eventual case of scaling up. For that eventual case, 12 recommendations considering the different layers of interoperability have been provided. CONCLUSION: The proposed approach, when successfully deployed as a federated analysis infrastructure, such as the one developed within the JA-InfAct, can concisely tackle all levels of the interoperability requirements from organisational to technical interoperability, supported by the close collaboration of the partners participating in the study. Any proposal for extension, should require further thinking on how to deal with new challenges on interoperability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...