Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37892936

RESUMO

Transcatheter aortic valve implantation (TAVI) is a procedure to treat severe aortic stenosis. There are several clinical concerns related to potential complications after the procedure, which demand the analysis of computerized tomography (CT) scans after TAVI to assess the implant's result. This work introduces a novel, fully automatic method for the analysis of post-TAVI 4D-CT scans to characterize the prosthesis and its relationship with the patient's anatomy. The method enables measurement extraction, including prosthesis volume, center of mass, cross-sectional area (CSA) along the prosthesis axis, and CSA difference between the aortic root and prosthesis, all the variables studied throughout the cardiac cycle. The method has been implemented and evaluated with a cohort of 13 patients with five different prosthesis models, successfully extracting all the measurements from each patient in an automatic way. For Allegra patients, the mean of the obtained inner volume values ranged from 10,798.20 mm3 to 18,172.35 mm3, and CSA in the maximum diameter plane varied from 396.35 mm2 to 485.34 mm2. The implantation of this new method could provide information of the important clinical value that would contribute to the improvement of TAVI, significantly reducing the time and effort invested by clinicians in the image interpretation process.

2.
Biomedicines ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36830810

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric analysis of changes in cognitive scores and PET features to test for there being multiple AD phenotypes. We used a computational method to identify phenotypes in a retrospective cohort study (532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological assessments, to develop a novel computational phenotyping method that uses Partial Volume Correction (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven phenotyping is valid, (2) the different techniques involved in the pipelines produce different results, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three phenotypes and permits us to analyze them under epigenetic conditions.

3.
Sensors (Basel) ; 23(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36772202

RESUMO

Due to the high occupational pressure suffered by intensive care units (ICUs), a correct estimation of the patients' length of stay (LoS) in the ICU is of great interest to predict possible situations of collapse, to help healthcare personnel to select appropriate treatment options and to predict patients' conditions. There has been a high amount of data collected by biomedical sensors during the continuous monitoring process of patients in the ICU, so the use of artificial intelligence techniques in automatic LoS estimation would improve patients' care and facilitate the work of healthcare personnel. In this work, a novel methodology to estimate the LoS using data of the first 24 h in the ICU is presented. To achieve this, XGBoost, one of the most popular and efficient state-of-the-art algorithms, is used as an estimator model, and its performance is optimized both from computational and precision viewpoints using Bayesian techniques. For this optimization, a novel two-step approach is presented. The methodology was carefully designed to execute codes on a high-performance computing system based on graphics processing units, which considerably reduces the execution time. The algorithm scalability is analyzed. With the proposed methodology, the best set of XGBoost hyperparameters are identified, estimating LoS with a MAE of 2.529 days, improving the results reported in the current state of the art and probing the validity and utility of the proposed approach.


Assuntos
Inteligência Artificial , Unidades de Terapia Intensiva , Humanos , Teorema de Bayes , Algoritmos , Metodologias Computacionais
4.
Artigo em Inglês | MEDLINE | ID: mdl-36834150

RESUMO

It is of great interest to develop and introduce new techniques to automatically and efficiently analyze the enormous amount of data generated in today's hospitals, using state-of-the-art artificial intelligence methods. Patients readmitted to the ICU in the same hospital stay have a higher risk of mortality, morbidity, longer length of stay, and increased cost. The methodology proposed to predict ICU readmission could improve the patients' care. The objective of this work is to explore and evaluate the potential improvement of existing models for predicting early ICU patient readmission by using optimized artificial intelligence algorithms and explainability techniques. In this work, XGBoost is used as a predictor model, combined with Bayesian techniques to optimize it. The results obtained predicted early ICU readmission (AUROC of 0.92 ± 0.03) improves state-of-the-art consulted works (whose AUROC oscillate between 0.66 and 0.78). Moreover, we explain the internal functioning of the model by using Shapley Additive Explanation-based techniques, allowing us to understand the model internal performance and to obtain useful information, as patient-specific information, the thresholds from which a feature begins to be critical for a certain group of patients, and the feature importance ranking.


Assuntos
Inteligência Artificial , Readmissão do Paciente , Humanos , Teorema de Bayes , Aprendizado de Máquina , Unidades de Terapia Intensiva
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1012-1015, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086463

RESUMO

Continuous monitoring of arterial blood pressure (ABP) of patients in hospital is currently carried out in an invasive way, which could represent a risk for them. In this paper, a noninvasive methodology to optimize ABP estimators using electrocardiogram and photoplethysmography signals is proposed. For this, the XGBoost machine learning model, optimized with Bayesian techniques, is executed in a Graphics Processing Unit, which drastically reduces execution time. The methodology is evaluated using the MIMIC-III Waveform Database. Systolic and diastolic pressures are estimated with mean absolute error values of 15.85 and 11.59 mmHg, respectively, similar to those of the state of the art. The main advantage of the proposed methodology with respect to others of the current state of the art is that it allows the optimization of the estimator model to be performed automatically and more efficiently at the computational level for the data available. Clinical Relevance- This approach has the advantage of using noninvasive methods to continuously monitor patient's arterial blood pressure, reducing the risk for patients.


Assuntos
Pressão Arterial , Determinação da Pressão Arterial , Pressão Arterial/fisiologia , Teorema de Bayes , Pressão Sanguínea , Determinação da Pressão Arterial/métodos , Monitores de Pressão Arterial , Humanos
6.
Diagnostics (Basel) ; 12(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35204425

RESUMO

Transcatheter aortic valve implantation (TAVI) has become the treatment of choice for patients with severe aortic stenosis and high surgical risk. Angiography has been established as an essential tool in TAVI, as this modality provides real-time images required to support the intervention. The automatic interpretation and parameter extraction on such images can lead to significative improvements and new applications in the procedure that, in most cases, rely on a prior identification of the transcatheter heart valve (THV). In this paper, U-Net architecture is proposed for the automatic segmentation of THV on angiographies, studying the role of its hyperparameters in the quality of the segmentations. Several experiments have been conducted, testing the methodology using multiple configurations and evaluating the results on different types of frames captured during the procedure. The evaluation has been performed in terms of conventional classification metrics, complemented with two new metrics, specifically defined for this problem. Those new metrics provide a more appropriate assessment of the quality of the results, given the class imbalance in the dataset. From an analysis of the evaluation results, it can be concluded that the method provides appropriate segmentation results for this dataset.

7.
Sensors (Basel) ; 21(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770432

RESUMO

Due to the continuous monitoring process of critical patients, Intensive Care Units (ICU) generate large amounts of data, which are difficult for healthcare personnel to analyze manually, especially in overloaded situations such as those present during the COVID-19 pandemic. Therefore, the automatic analysis of these data has many practical applications in patient monitoring, including the optimization of alarm systems for alerting healthcare personnel. In this paper, explainable machine learning techniques are used for this purpose, with a methodology based on age-stratification, boosting classifiers, and Shapley Additive Explanations (SHAP) proposed. The methodology is evaluated using MIMIC-III, an ICU patient research database. The results show that the proposed model can predict mortality within the ICU with AUROC values of 0.961, 0.936, 0.898, and 0.883 for age groups 18-45, 45-65, 65-85 and 85+, respectively. By using SHAP, the features with the highest impact in predicting mortality for different age groups and the threshold from which the value of a clinical feature has a negative impact on the patient's health can be identified. This allows ICU alarms to be improved by identifying the most important variables to be sensed and the threshold values at which the health personnel must be warned.


Assuntos
COVID-19 , Pandemias , Humanos , Unidades de Terapia Intensiva , Aprendizado de Máquina , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...