Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38092990

RESUMO

Major depressive disorder (MDD) and type 2 diabetes (T2D) are complex disorders whose comorbidity can be due to hypercortisolism and may be explained by dysfunction of the corticotropin-releasing hormone receptor 1 (CRHR1) and cortisol feedback within the hypothalamic-pituitary-adrenal axis (HPA axis). To investigate the role of the CRHR1 gene in familial T2D, MDD, and MDD-T2D comorbidity, we tested 152 CRHR1 single-nucleotide-polymorphisms (SNPs), via 2-point parametric linkage and linkage disequilibrium (LD; i.e., association) analyses using 4 models, in 212 peninsular families with T2D and MDD. We detected linkage/LD/association to/with MDD and T2D with 122 (116 novel) SNPs. MDD and T2D had 4 and 3 disorder-specific novel risk LD blocks, respectively, whose risk variants reciprocally confirm one another. Comorbidity was conferred by 3 novel independent SNPs. In silico analyses reported novel functional changes, including the binding site of glucocorticoid receptor-alpha [GR-α] on CRHR1 for transcription regulation. This is the first report of CRHR1 pleiotropic linkage/LD/association with peninsular familial MDD and T2D. CRHR1 contribution to MDD is stronger than to T2D and may antecede T2D onset. Our findings suggest a new molecular-based clinical entity of MDD-T2D and should be replicated in other ethnic groups.

2.
Front Physiol ; 14: 1286808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033343

RESUMO

CaVγ2 (Stargazin or TARPγ2) is a protein expressed in various types of neurons whose function was initially associated with a decrease in the functional expression of voltage-gated presynaptic Ca2+ channels (CaV) and which is now known to promote the trafficking of the postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) towards the cell membrane. Alterations in CaVγ2 expression has been associated with several neurological disorders, such as absence epilepsy. However, its regulation at the transcriptional level has not been intensively addressed. It has been reported that the promoter of the Cacng2 gene, encoding the rat CaVγ2, is bidirectional and regulates the transcription of a long non-coding RNA (lncRNA) in the antisense direction. Here, we investigate the proximal promoter region of the human CACNG2 gene in the antisense direction and show that this region includes two functional cAMP response elements that regulate the expression of a lncRNA called CACNG2-DT. The activity of these sites is significantly enhanced by forskolin, an adenylate cyclase activator, and inhibited by H89, a protein kinase A (PKA) antagonist. Therefore, this regulatory mechanism implies the activation of G protein-coupled receptors and downstream phosphorylation. Interestingly, we also found that the expression of CACNG2-DT may increase the levels of the CaVγ2 subunit. Together, these data provide novel information on the organization of the human CACNG2-DT gene promoter, describe modulatory domains and mechanisms that can mediate various regulatory inputs, and provide initial information on the molecular mechanisms that regulate the functional expression of the CaVγ2 protein.

3.
Neuroscience ; 522: 150-164, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169165

RESUMO

Previous studies have shown that in addition to its role within the voltage-gated calcium channel complex in the plasma membrane, the neuronal CaVß subunit can translocate to the cell nucleus. However, little is known regarding the role this protein could play in the nucleus, nor the molecular mechanism used by CaVß to enter this cell compartment. This report shows evidence that CaVß3 has nuclear localization signals (NLS) that are not functional, suggesting that the protein does not use a classical nuclear import pathway. Instead, its entry into the nucleus could be associated with another protein that would function as a carrier, using a mechanism known as a piggyback. Mass spectrometry assays and bioinformatic analysis allowed the identification of proteins that could be participating in the entry of CaVß3 into the nucleus. Likewise, through proximity ligation assays (PLA), it was found that members of the heterogeneous nuclear ribonucleoproteins (hnRNPs) and B56δ, a regulatory subunit of the protein phosphatase 2A (PP2A), could function as proteins that regulate this piggyback mechanism. On the other hand, bioinformatics and site-directed mutagenesis assays allowed the identification of a functional nuclear export signal (NES) that controls the exit of CaVß3 from the nucleus, which would allow the completion of the nuclear transport cycle of the protein. These results reveal a novel mechanism for the nuclear transport cycle of the neuronal CaVß3 subunit.


Assuntos
Canais de Cálcio , Núcleo Celular , Transporte Ativo do Núcleo Celular , Canais de Cálcio/metabolismo , Núcleo Celular/metabolismo , Neurônios/metabolismo
4.
Pflugers Arch ; 475(5): 595-606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36964781

RESUMO

The primary function of dystrophin is to form a link between the cytoskeleton and the extracellular matrix. In addition to this crucial structural function, dystrophin also plays an essential role in clustering and organizing several signaling proteins, including ion channels. Proteomic analysis of the whole rodent brain has stressed the role of some components of the dystrophin-associated glycoprotein complex (DGC) as potential interacting proteins of the voltage-gated Ca2+ channels of the CaV2 subfamily. The interaction of CaV2 with signaling and scaffolding proteins, such as the DGC components, may influence their function, stability, and location in neurons. This work aims to study the interaction between dystrophin and CaV2.1. Our immunoprecipitation data showed the presence of a complex formed by CaV2.1, CaVα2δ-1, CaVß4e, Dp140, and α1-syntrophin in the brain. Furthermore, proximity ligation assays (PLA) showed that CaV2.1 and CaVα2δ-1 interact with dystrophin in the hippocampus and cerebellum. Notably, Dp140 and α1-syntrophin increase CaV2.1 protein stability, half-life, permanence in the plasma membrane, and current density through recombinant CaV2.1 channels. Therefore, we have identified the Dp140 and α1-syntrophin as novel interaction partners of CaV2.1 channels in the mammalian brain. Consistent with previous findings, our work provides evidence of the role of DGC in anchoring and clustering CaV channels in a macromolecular complex.


Assuntos
Distrofina , Proteômica , Animais , Distrofina/genética , Distrofina/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo
5.
PLoS One ; 17(12): e0279186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520928

RESUMO

The overexpression of α2δ-1 is related to the development and degree of malignancy of diverse types of cancer. This protein is an auxiliary subunit of voltage-gated Ca2+ (CaV) channels, whose expression favors the trafficking of the main pore-forming subunit of the channel complex (α1) to the plasma membrane, thereby generating an increase in Ca2+ entry. Interestingly, TLR-4, a protein belonging to the family of toll-like receptors that participate in the inflammatory response and the transcription factor Sp1, have been linked to the progression of glioblastoma multiforme (GBM). Therefore, this report aimed to evaluate the role of the α2δ-1 subunit in the progression of GBM and investigate whether Sp1 regulates its expression after the activation of TLR-4. To this end, the expression of α2δ-1, TLR-4, and Sp1 was assessed in the U87 human glioblastoma cell line, and proliferation and migration assays were conducted using different agonists and antagonists. The actions of α2δ-1 were also investigated using overexpression and knockdown strategies. Initial luciferase assays and Western blot analyses showed that the activation of TLR-4 favors the transcription and expression of α2δ-1, which promoted the proliferation and migration of the U87 cells. Consistent with this, overexpression of α2δ-1, Sp1, and TLR-4 increased cell proliferation and migration, while their knockdown with specific siRNAs abrogated these actions. Our data also suggest that TLR-4-mediated regulation of α2δ-1 expression occurs through the NF-kB signaling pathway. Together, these findings strongly suggest that the activation of TLR-4 increases the expression of α2δ-1 in U87 cells, favoring their proliferative and migratory potential, which might eventually provide a theoretical basis to examine novel biomarkers and molecular targets for the diagnosis and treatment of GBM.


Assuntos
Cálcio , Glioblastoma , Humanos , Cálcio/metabolismo , Glioblastoma/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proliferação de Células
6.
Int J Neurosci ; : 1-10, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35993158

RESUMO

Aim: Voltage-gated calcium (CaV) channels play an essential role in maintaining calcium homeostasis and regulating numerous physiological processes in neurons. Therefore, dysregulation of calcium signaling is relevant in many neurological disorders, including Parkinson's disease (PD). This review aims to introduce the role of CaV channels in PD and discuss some novel aspects of channel regulation and its impact on the molecular pathophysiology of the disease.Methods: an exhaustive search of the literature in the field was carried out using the PubMed database of The National Center for Biotechnology Information. Systematic searches were performed from the initial date of publication to May 2022.Results: Although α-synuclein aggregates are the main feature of PD, L-type calcium (CaV1) channels seem to play an essential role in the pathogenesis of PD. Changes in the functional expression of CaV1.3 channels alter Calcium homeostasis and contribute to the degeneration of dopaminergic neurons. Furthermore, recent studies suggest that CaV channel trafficking towards the cell membrane depends on the activity of the ubiquitin-proteasome system (UPS). In PD, there is an increase in the expression of L-type channels associated with a decrease in the expression of Parkin, an E3 enzyme of the UPS. Therefore, a link between Parkin and CaV channels could play a fundamental role in the pathogenesis of PD and, as such, could be a potentially attractive target for therapeutic intervention.Conclusion: The study of alterations in the functional expression of CaV channels will provide a framework to understand better the neurodegenerative processes that occur in PD and a possible path toward identifying new therapeutic targets to treat this condition.

7.
Pflugers Arch ; 474(4): 457-468, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235008

RESUMO

Neuropathic pain is one of the primary forms of chronic pain and is the consequence of the somatosensory system's direct injury or disease. It is a relevant public health problem that affects about 10% of the world's general population. In neuropathic pain, alteration in neurotransmission occurs at various levels, including the dorsal root ganglia, the spinal cord, and the brain, resulting from the malfunction of diverse molecules such as receptors, ion channels, and elements of specific intracellular signaling pathways. In this context, there have been exciting advances in elucidating neuropathic pain's cellular and molecular mechanisms in the last decade, including the possible role that long non-coding RNAs (lncRNAs) may play, which open up new alternatives for the development of diagnostic and therapeutic strategies for this condition. This review focuses on recent studies associated with the possible relevance of lncRNAs in the development and maintenance of neuropathic pain through their actions on the functional expression of ion channels. Recognizing the changes in the function and spatio-temporal patterns of expression of these membrane proteins is crucial to understanding the control of neuronal excitability in chronic pain syndromes.


Assuntos
Dor Crônica , Neuralgia , RNA Longo não Codificante , Animais , Dor Crônica/genética , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
Neurosci Res ; 170: 50-58, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32987088

RESUMO

Primary afferent fibers express extrasynaptic GABAA and GABAB receptors in the axons and soma. However, whether these receptors are tonically activated by ambient GABA and the source of the neurotransmitter is presently unknown. Here, we show that GABA release from dorsal root ganglia (DRG) does not depend on extracellular calcium, but depends upon calcium released from intracellular stores, and is mediated by Best1 channels. Using a preparation consisting of the spinal nerve in continuity with the DRG and the dorsal root, we found that endogenous GABA tonically activates GABA receptors, depressing the excitability of the primary afferents. In addition, using HPLC we found that GABA is released in the DRG, and by immunofluorescence microscopy we show the presence of GABA, the Best1 channel, and some enzymes of the putrescine pathway of GABA biosynthesis, in glutamine synthase- and GFAP-positive satellite glial cells. Last, we found that the blockade of the Best1 channel activity reduced the excitability of primary afferents and prevented the activation of the GABA receptors. These results suggest that satellite glial cells may be the source of endogenous GABA released in the DRG via Best1 channels, which tonically activates extrasynaptic GABA receptors.


Assuntos
Neurônios Aferentes , Ácido gama-Aminobutírico , Axônios , Gânglios Espinais , Neuroglia , Receptores de GABA-A
9.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255148

RESUMO

The Transient Receptor Vanilloid 1 (TRPV1) or capsaicin receptor is a nonselective cation channel, which is abundantly expressed in nociceptors. This channel is an important transducer of several noxious stimuli, having a pivotal role in pain development. Several TRPV1 studies have focused on understanding its structure and function, as well as on the identification of compounds that regulate its activity. The intracellular roles of these channels have also been explored, highlighting TRPV1's actions in the homeostasis of Ca2+ in organelles such as the mitochondria. These studies have evidenced how the activation of TRPV1 affects mitochondrial functions and how this organelle can regulate TRPV1-mediated nociception. The close relationship between this channel and mitochondria has been determined in neuronal and non-neuronal cells, demonstrating that TRPV1 activation strongly impacts on cell physiology. This review focuses on describing experimental evidence showing that TRPV1 influences mitochondrial function.


Assuntos
Sinalização do Cálcio/genética , Mitocôndrias/genética , Dor/genética , Canais de Cátion TRPV/genética , Animais , Cálcio/metabolismo , Humanos , Mitocôndrias/metabolismo , Nociceptividade/fisiologia , Dor/fisiopatologia , Transdução de Sinais/genética
10.
Am J Physiol Endocrinol Metab ; 319(1): E232-E244, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369417

RESUMO

Voltage-gated Ca2+ (CaV) channels are expressed in endocrine cells where they contribute to hormone secretion. Diverse chemical messengers, including epidermal growth factor (EGF), are known to affect the expression of CaV channels. Previous studies have shown that EGF increases Ca2+ currents in GH3 pituitary cells by increasing the number of high voltage-activated (HVA) CaV channels at the cell membrane, which results in enhanced prolactin (PRL) secretion. However, little is known regarding the mechanisms underlying this regulation. Here, we show that EGF actually increases the expression of the CaVα2δ-1 subunit, a key molecular component of HVA channels. The analysis of the gene promoter encoding CaVα2δ-1 (CACNA2D1) revealed binding sites for transcription factors activated by the Ras/Raf/MEK/ERK signaling cascade. Chromatin immunoprecipitation and site-directed mutagenesis showed that ELK-1 is crucial for the transcriptional regulation of CACNA2D1 in response to EGF. Furthermore, we found that EGF increases the membrane expression of CaVα2δ-1 and that ELK-1 overexpression increases HVA current density, whereas ELK-1 knockdown decreases the functional expression of the channels. Hormone release assays revealed that CaVα2δ-1 overexpression increases PRL secretion. These results suggest a mechanism for how EGF, by activating the Ras/Raf/MEK/ERK/ELK-1 pathway, may influence the expression of HVA channels and the secretory behavior of pituitary cells.


Assuntos
Canais de Cálcio Tipo L/genética , Fator de Crescimento Epidérmico/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , Proteínas Elk-1 do Domínio ets/genética , Quinases raf/genética , Proteínas ras/genética , Animais , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ratos , Transdução de Sinais , Proteínas Elk-1 do Domínio ets/metabolismo , Quinases raf/metabolismo , Proteínas ras/metabolismo
11.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471309

RESUMO

Transient receptor potential (TRP) channels are remarkable transmembrane protein complexes that are essential for the physiology of the tissues in which they are expressed. They function as non-selective cation channels allowing for the signal transduction of several chemical, physical and thermal stimuli and modifying cell function. These channels play pivotal roles in the nervous and reproductive systems, kidney, pancreas, lung, bone, intestine, among others. TRP channels are finely modulated by different mechanisms: regulation of their function and/or by control of their expression or cellular/subcellular localization. These mechanisms are subject to being affected by several endogenously-produced compounds, some of which are of a lipidic nature such as steroids. Fascinatingly, steroids and TRP channels closely interplay to modulate several physiological events. Certain TRP channels are affected by the typical genomic long-term effects of steroids but others are also targets for non-genomic actions of some steroids that act as direct ligands of these receptors, as will be reviewed here.


Assuntos
Androgênios/metabolismo , Estrogênios/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética
12.
Biochem Biophys Res Commun ; 524(1): 255-261, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31983427

RESUMO

Neurotransmission is one of the most important processes in neuronal communication and depends largely on Ca2+ entering synaptic terminals through voltage-gated Ca2+ (CaV) channels. Although the contribution of L-type CaV channels in neurotransmission has not been unambiguously established, increasing evidence suggests a role for these proteins in noradrenaline, dopamine, and GABA release. Here we report the regulation of L-type channels by Cdk5, and its possible effect on GABA release in the substantia nigra pars reticulata (SNpr). Using patch-clamp electrophysiology, we show that Cdk5 inhibition by Olomoucine significantly increases current density through CaV1.3 (L-type) channels heterologously expressed in HEK293 cells. Likewise, in vitro phosphorylation showed that Cdk5 phosphorylates residue S1947 in the C-terminal region of the pore-forming subunit of CaV1.3 channels. Consistent with this, the mutation of serine into alanine (S1947A) prevented the regulation of Cdk5 on CaV1.3 channel activity. Our data also revealed that the inhibition of Cdk5 increased the frequency of high K+-evoked miniature inhibitory postsynaptic currents in rat SNpr neurons, acting on L-type channels. These results unveil a novel regulatory mechanism of GABA release in the SNpr that involves a direct action of Cdk5 on L-type channels.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Potenciais Pós-Sinápticos Inibidores , Neostriado/metabolismo , Receptores de GABA-A/metabolismo , Substância Negra/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/química , Células HEK293 , Humanos , Masculino , Fosforilação , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo
13.
J Neurosci ; 40(2): 283-296, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31744861

RESUMO

Voltage-gated T-type Ca2+ (CaV3) channels regulate diverse physiological events, including neuronal excitability, and have been linked to several pathological conditions such as absence epilepsy, cardiovascular diseases, and neuropathic pain. It is also acknowledged that calcium/calmodulin-dependent protein kinase II and protein kinases A and C regulate the activity of T-type channels. Interestingly, peripheral nerve injury induces tactile allodynia and upregulates CaV3.2 channels and cyclin-dependent kinase 5 (Cdk5) in dorsal root ganglia (DRG) and spinal dorsal horn. Here, we report that recombinant CaV3.2 channels expressed in HEK293 cells are regulatory targets of Cdk5. Site-directed mutagenesis showed that the relevant sites for this regulation are residues S561 and S1987. We also found that Cdk5 may regulate CaV3.2 channel functional expression in rats with mechanical allodynia induced by spinal nerve ligation (SNL). Consequently, the Cdk5 inhibitor olomoucine affected the compound action potential recorded in the spinal nerves, as well as the paw withdrawal threshold. Likewise, Cdk5 expression was upregulated after SNL in the DRG. These findings unveil a novel mechanism for how phosphorylation may regulate CaV3.2 channels and suggest that increased channel activity by Cdk5-mediated phosphorylation after SNL contributes nerve injury-induced tactile allodynia.SIGNIFICANCE STATEMENT Neuropathic pain is a current public health challenge. It can develop as a result of injury or nerve illness. It is acknowledged that the expression of various ion channels can be altered in neuropathic pain, including T-type Ca2+ channels that are expressed in sensory neurons, where they play a role in the regulation of cellular excitability. The present work shows that the exacerbated expression of Cdk5 in a preclinical model of neuropathic pain increases the functional expression of CaV3.2 channels. This finding is relevant for the understanding of the molecular pathophysiology of the disease. Additionally, this work may have a substantial translational impact, since it describes a novel molecular pathway that could represent an interesting therapeutic alternative for neuropathic pain.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Potenciais de Ação/fisiologia , Animais , Células HEK293 , Humanos , Ligadura , Masculino , Traumatismos dos Nervos Periféricos/metabolismo , Fosforilação , Ratos , Ratos Wistar , Nervos Espinhais/lesões , Nervos Espinhais/cirurgia
14.
Oncology ; 97(6): 373-382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31430760

RESUMO

INTRODUCTION: Breast cancer is one of the leading causes of death worldwide and is the result of dysregulation of various signaling pathways in mammary epithelial cells. The mortality rate in patients suffering from breast cancer is high because the tumor cells have a prominent invasive capacity towards the surrounding tissues. Previous studies carried out in tumor cell models show that voltage-gated ion channels may be important molecular actors that contribute to the migratory and invasive capacity of the tumor cells. METHODS: In this study, by using an experimental strategy that combines cell and molecular biology assays with electrophysiological recording, we sought to determine whether the voltage-dependent sodium channel NaV1.5 regulates the migratory capacity of the human breast cancer cell line MDA-MB 231, when cells are maintained in the presence of epidermal growth factor (EGF), as an inductor of the epithelial-mesenchymal transition. RESULTS: Our data show that EGF stimulates the migratory capacity of MDA-MB 231 cells, by regulating the functional expression of NaV1.5 channels. Consistent with this, the stimulatory actions of the growth factor were prevented by the use of tetrodotoxin, an Na+ channel selective blocker, as well as by resveratrol, an antioxidant that can also affect Na+ channel activity. DISCUSSION: The understanding of molecular mechanisms, such as the EGF pathway in the progression of breast cancer is fundamental for the design of more effective therapeutic strategies for the disease.


Assuntos
Neoplasias da Mama/patologia , Fator de Crescimento Epidérmico/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal , Feminino , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/análise , Resveratrol/farmacologia
15.
Neuroscience ; 412: 207-215, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220545

RESUMO

High voltage-activated (HVA) Ca2+ (CaV) channels are oligomeric complexes formed by an ion-conducting main subunit (Cavα1) and at least two auxiliary subunits (Cavß and CaVα2δ). It has been reported that the expression of CaVα2δ1 increases in the dorsal root ganglia (DRGs) of animals with mechanical allodynia, and that the transcription factor Sp1 regulates the expression of the auxiliary subunit. Hence, the main aim of this work was to investigate the role of Sp1 as a molecular determinant of the exacerbated expression of CaVα2δ-1 in the nerve ligation-induced model of mechanical allodynia. Our results show that ligation of L5/L6 spinal nerves (SNL) produced allodynia and increased the expression of Sp1 and CaVα2δ-1 in the DRGs. Interestingly, intrathecal administration of the Sp1 inhibitor mithramycin A (Mth) prevented allodynia and decreased the expression of Sp1 and CaVα2δ-1. Likewise, electrophysiological recordings showed that incubation with Mth decreased Ca2+ current density in the DRG neurons, acting mostly on HVA channels. These results suggest that L5/L6 SNL produces mechanical allodynia and increases the expression of the transcription factor Sp1 and the subunit CaVα2δ-1 in the DRGs, while Mth decreases mechanical allodynia and Ca2+ currents through HVA channels in sensory neurons by reducing the functional expression of the CaVα2δ-1 subunit.


Assuntos
Canais de Cálcio/metabolismo , Gânglios Espinais/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriais/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Feminino , Gânglios Espinais/efeitos dos fármacos , Neuralgia/etiologia , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/metabolismo , Plicamicina/análogos & derivados , Plicamicina/farmacologia , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Fator de Transcrição Sp1/antagonistas & inibidores
16.
Front Pharmacol ; 10: 419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068816

RESUMO

Cell excitability is tightly regulated by the activity of ion channels that allow for the passage of ions across cell membranes. Ion channel activity is controlled by different mechanisms that change their gating properties, expression or abundance in the cell membrane. The latter can be achieved by forming complexes with a diversity of proteins like chaperones such as the Sigma-1 receptor (Sig-1R), which is one with unique features and exhibits a role as a ligand-operated chaperone. This molecule also displays high intracellular mobility according to its activation level since, depletion of internal Ca+2 stores or the presence of specific ligands, produce Sig-1R's mobilization from the endoplasmic reticulum toward the plasma membrane or nuclear envelope. The function of the Sig-1R as a chaperone is regulated by synthetic and endogenous ligands, with some of these compounds being a steroids and acting as key endogenous modifiers of the actions of the Sig-1R. There are cases in the literature that exemplify the close relationship between the actions of steroids on the Sig-1R and the resulting negative or positive effects on ion channel function/abundance. Such interactions have been shown to importantly influence the physiology of mammalian cells leading to changes in their excitability. The present review focuses on describing how the Sig-1R regulates the functional properties and the expression of some sodium, calcium, potassium, and TRP ion channels in the presence of steroids and the physiological consequences of these interplays at the cellular level are also discussed.

17.
J Membr Biol ; 251(4): 535-550, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29779049

RESUMO

Dystrophin is a cytoskeleton-linked membrane protein that binds to a larger multiprotein assembly called the dystrophin-associated glycoprotein complex (DGC). The deficiency of dystrophin or the components of the DGC results in the loss of connection between the cytoskeleton and the extracellular matrix with significant pathophysiological implications in skeletal and cardiac muscle as well as in the nervous system. Although the DGC plays an important role in maintaining membrane stability, it can also be considered as a versatile and flexible molecular complex that contribute to the cellular organization and dynamics of a variety of proteins at specific locations in the plasma membrane. This review deals with the role of the DGC in transmembrane signaling by forming supramolecular assemblies for regulating ion channel localization and activity. These interactions are relevant for cell homeostasis, and its alterations may play a significant role in the etiology and pathogenesis of various disorders affecting muscle and nerve function.


Assuntos
Distrofina/metabolismo , Glicoproteínas/metabolismo , Canais Iônicos/metabolismo , Animais , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Transdução de Sinais
18.
Neurosci Lett ; 673: 136-141, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29518540

RESUMO

It is well known that the CaVα2δ auxiliary subunit regulates the density of high voltage-activated Ca2+ channels in the plasma membrane and that alterations in their functional expression might have implications in the pathophysiology of diverse human diseases such as neuropathic pain. However, little is known concerning the transcriptional regulation of this protein. We previously characterized the promoter of CaVα2δ, and here we report its regulation by the transcription factor Egr-1. Using the neuroblastoma N1E-115 cells, we found that Egr-1 interacts specifically with its binding site in the promoter, affecting the transcriptional regulation of CaVα2δ. Overexpression and knockdown analysis of Egr-1 showed significant changes in the transcriptional activity of the CaVα2δ promoter. Egr-1 also regulated the expression of CaVα2δ at the level of protein. Also, functional studies showed that Egr-1 knockdown significantly decreases Ca2+ currents in dorsal root ganglion (DRG) neurons, while overexpression of the transcription factor increased Ca2+ currents in the F11 cell line, a hybrid of DRG and N18TG2 neuroblastoma cells. Studying the effects of Egr-1 on the transcriptional expression of CaVα2δ could help to understand the regulatory mechanisms of this protein in both health and disease.


Assuntos
Canais de Cálcio/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica , Animais , Canais de Cálcio/genética , Linhagem Celular Tumoral , Gânglios Espinais/metabolismo , Camundongos , Neurônios/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(7): E1657-E1666, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378958

RESUMO

The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.


Assuntos
Dor/metabolismo , Receptores sigma/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Capsaicina/metabolismo , Linhagem Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/genética , Progesterona/metabolismo , Ligação Proteica , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/genética , Receptor Sigma-1
20.
Biochem Biophys Res Commun ; 491(1): 53-58, 2017 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-28705737

RESUMO

Leptin, a peptide hormone produced by adipocytes, is recognized as one of the signals involved in the onset of reproductive activity. The leptin receptor has been found in hypothalamic neurons and pituitary gonadotropes, suggesting that the hormone may act at both sites to stimulate the secretion of GnRH and consequently, FSH and LH. In response to a stimulus such as a hypothalamic secretagogue, gonadotropes respond with changes in electrical activity, intracellular Ca2+ and hormone release. The main aim of this report was to investigate whether leptin promotes a change in the electrical and secretory activities of bovine gonadotropes. After 48 h of treatment with leptin (10 nM) significant changes in the action potential properties were observed in gonadotropes, which included an increase in amplitude, time-to-pike and post-hyperpolarization, as well as a decrease in firing threshold. Likewise, leptin induced a significant (∼1.3-fold) up-regulation of voltage-gated Na+ channel current density, and a selective increase (∼2.1-fold) in Ca2+ current density through high voltage-activated channels. Consistent with this, leptin enhanced GnRH-induced secretion of LH measured by ELISA. We suggest that leptin enhances membrane expression of voltage-gated Na+ and Ca2+ channels, which results in a modulation of the action potential properties and an increase in hormone release from gonadotropes.


Assuntos
Potenciais de Ação/fisiologia , Células Endócrinas/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Leptina/metabolismo , Hormônio Luteinizante/metabolismo , Potenciais da Membrana/fisiologia , Animais , Bovinos , Células Cultivadas , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...