Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36295745

RESUMO

The use of Xenopus oocytes in electrophysiological and biophysical research constitutes a long and successful story, providing major advances to the knowledge of the function and modulation of membrane proteins, mostly receptors, ion channels, and transporters. Earlier reports showed that these cells are capable of correctly expressing heterologous proteins after injecting the corresponding mRNA or cDNA. More recently, the Xenopus oocyte has become an outstanding host-cell model to carry out detailed studies on the function of fully-processed foreign membrane proteins after their microtransplantation to the oocyte. This review focused on the latter overall process of transplanting foreign membrane proteins to the oocyte after injecting plasma membranes or purified and reconstituted proteins. This experimental approach allows for the study of both the function of mature proteins, with their native stoichiometry and post-translational modifications, and their putative modulation by surrounding lipids, mostly when the protein is purified and reconstituted in lipid matrices of defined composition. Remarkably, this methodology enables functional microtransplantation to the oocyte of membrane receptors, ion channels, and transporters from different sources including human post-mortem tissue banks. Despite the large progress achieved over the last decades on the structure, function, and modulation of neuroreceptors and ion channels in healthy and pathological tissues, many unanswered questions remain and, most likely, Xenopus oocytes will continue to help provide valuable responses.

2.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012519

RESUMO

Y55W mutants of non-selective NaK and partly K+-selective NaK2K channels have been used to explore the conformational dynamics at the pore region of these channels as they interact with either Na+ or K+. A major conclusion is that these channels exhibit a remarkable pore conformational flexibility. Homo-FRET measurements reveal a large change in W55-W55 intersubunit distances, enabling the selectivity filter (SF) to admit different species, thus, favoring poor or no selectivity. Depending on the cation, these channels exhibit wide-open conformations of the SF in Na+, or tight induced-fit conformations in K+, most favored in the four binding sites containing NaK2K channels. Such conformational flexibility seems to arise from an altered pattern of restricting interactions between the SF and the protein scaffold behind it. Additionally, binding experiments provide clues to explain such poor selectivity. Compared to the K+-selective KcsA channel, these channels lack a high affinity K+ binding component and do not collapse in Na+. Thus, they cannot properly select K+ over competing cations, nor reject Na+ by collapsing, as K+-selective channels do. Finally, these channels do not show C-type inactivation, likely because their submillimolar K+ binding affinities prevent an efficient K+ loss from their SF, thus favoring permanently open channel states.


Assuntos
Canais de Potássio , Potássio , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Canais Iônicos/metabolismo , Íons/metabolismo , Potássio/metabolismo , Canais de Potássio/metabolismo , Conformação Proteica , Sódio/metabolismo
3.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681946

RESUMO

Fritillaria bulbs are used in Traditional Chinese Medicine to treat several illnesses. Peimine (Pm), an anti-inflammatory compound from Fritillaria, is known to inhibit some voltage-dependent ion channels and muscarinic receptors, but its interaction with ligand-gated ion channels remains unexplored. We have studied if Pm affects nicotinic acetylcholine receptors (nAChRs), since they play broad functional roles, both in the nervous system and non-neuronal tissues. Muscle-type nAChRs were incorporated to Xenopus oocytes and the action of Pm on the membrane currents elicited by ACh (IAChs) was assessed. Functional studies were combined with virtual docking and molecular dynamics assays. Co-application of ACh and Pm reversibly blocked IACh, with an IC50 in the low micromolar range. Pm inhibited nAChR by: (i) open-channel blockade, evidenced by the voltage-dependent inhibition of IAch, (ii) enhancement of nAChR desensitization, revealed by both an accelerated IACh decay and a decelerated IACh deactivation, and (iii) resting-nAChR blockade, deduced from the IACh inhibition elicited by Pm when applied before ACh superfusion. In good concordance, virtual docking and molecular dynamics assays demonstrated that Pm binds to different sites at the nAChR, mostly at the transmembrane domain. Thus, Pm from Fritillaria bulbs, considered therapeutic herbs, targets nAChRs with high affinity, which might account for its anti-inflammatory actions.


Assuntos
Anti-Inflamatórios/farmacologia , Cevanas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Músculos/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Medicamentos de Ervas Chinesas/farmacologia , Músculos/metabolismo , Oócitos/metabolismo , Receptores Nicotínicos/genética , Xenopus laevis
4.
Neuroscience ; 439: 62-79, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31158437

RESUMO

Most local anesthetics (LAs) are amine compounds bearing one or several phenolic rings. Many of them are protonated at physiological pH, but benzocaine (Bzc) is permanently uncharged, which is relevant because the effects of LAs on nicotinic acetylcholine (ACh) receptors (nAChRs) depend on their presence as uncharged or protonated species. The aims of this study were to assess the effects of Bzc on nAChRs and to correlate them with its binding to putative interacting sites on this receptor. nAChRs from Torpedo electroplaques were microtransplanted to Xenopus oocytes and currents elicited by ACh (IAChs), either alone or together with Bzc, were recorded at different potentials. Co-application of ACh with increasing concentrations of Bzc showed that Bzc reversibly blocked nAChRs. IACh inhibition by Bzc was voltage-independent, but the IACh rebound elicited when rinsing Bzc suggests an open-channel blockade. Besides, ACh and Bzc co-application enhanced nAChR desensitization. When Bzc was just pre-applied it also inhibited IACh, by blocking closed (resting) nAChRs. This blockade slowed down the kinetics of both the IACh activation and the recovery from blockade. The electrophysiological results indicate that Bzc effects on nAChRs are similar to those of 2,6-dimethylaniline, an analogue of the hydrophobic moiety of lidocaine. Furthermore, docking assays on models of the nAChR revealed that Bzc and DMA binding sites on nAChRs overlap fairly well. These results demonstrate that Bzc inhibits nAChRs by multiple mechanisms and contribute to better understanding both the modulation of nAChRs and how LAs elicit some of their clinical side effects. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.


Assuntos
Receptores Nicotínicos , Acetilcolina , Anestésicos Locais/farmacologia , Animais , Benzocaína/farmacologia , Músculos , Oócitos
5.
Int J Mol Sci ; 20(3)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30764559

RESUMO

Cation binding under equilibrium conditions has been used as a tool to explore the accessibility of permeant and nonpermeant cations to the selectivity filter in three different inactivated models of the potassium channel KcsA. The results show that the stack of ion binding sites (S1 to S4) in the inactivated filter models remain accessible to cations as they are in the resting channel state. The inactivated state of the selectivity filter is therefore "resting-like" under such equilibrium conditions. Nonetheless, quantitative differences in the apparent KD's of the binding processes reveal that the affinity for the binding of permeant cations to the inactivated channel models, mainly K⁺, decreases considerably with respect to the resting channel. This is likely to cause a loss of K⁺ from the inactivated filter and consequently, to promote nonconductive conformations. The most affected site by the affinity loss seems to be S4, which is interesting because S4 is the first site to accommodate K⁺ coming from the channel vestibule when K⁺ exits the cell. Moreover, binding of the nonpermeant species, Na⁺, is not substantially affected by inactivation, meaning that the inactivated channels are also less selective for permeant versus nonpermeant cations under equilibrium conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Canais de Potássio/metabolismo , Streptomyces lividans/metabolismo , Proteínas de Bactérias/química , Cátions/metabolismo , Modelos Moleculares , Potássio/metabolismo , Canais de Potássio/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Sódio/metabolismo , Streptomyces lividans/química
6.
J Gen Physiol ; 143(3): 361-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24567510

RESUMO

The transient receptor potential vanilloid receptor subtype I (TRPV1) channel acts as a polymodal sensory receptor gated by chemical and physical stimuli. Like other TRP channels, TRPV1 contains in its C terminus a short, conserved domain called the TRP box, which is necessary for channel gating. Substitution of two TRP box residues-I696 and W697-with Ala markedly affects TRPV1's response to all activating stimuli, which indicates that these two residues play a crucial role in channel gating. We systematically replaced I696 and W697 with 18 native l-amino acids (excluding cysteine) and evaluated the effect on voltage- and capsaicin-dependent gating. Mutation of I696 decreased channel activation by either voltage or capsaicin; furthermore, gating was only observed with substitution of hydrophobic amino acids. Substitution of W697 with any of the 18 amino acids abolished gating in response to depolarization alone, shifting the threshold to unreachable voltages, but not capsaicin-mediated gating. Moreover, vanilloid-activated responses of W697X mutants showed voltage-dependent gating along with a strong voltage-independent component. Analysis of the data using an allosteric model of activation indicates that mutation of I696 and W697 primarily affects the allosteric coupling constants of the ligand and voltage sensors to the channel pore. Together, our findings substantiate the notion that inter- and/or intrasubunit interactions at the level of the TRP box are critical for efficient coupling of stimulus sensing and gate opening. Perturbation of these interactions markedly reduces the efficacy and potency of the activating stimuli. Furthermore, our results identify these interactions as potential sites for pharmacological intervention.


Assuntos
Ativação do Canal Iônico , Mutação de Sentido Incorreto , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Regulação Alostérica , Sítio Alostérico , Animais , Capsaicina/farmacologia , Células HEK293 , Humanos , Potenciais da Membrana , Ratos , Fármacos do Sistema Sensorial/farmacologia , Canais de Cátion TRPV/química
7.
PLoS One ; 8(1): e53231, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308167

RESUMO

1,2-Diamine derivatives are valuable building blocks to heterocyclic compounds and important precursors of biologically relevant compounds. In this respect, amino acid-derived ß-keto esters are a suitable starting point for the synthesis of ß,γ-diamino ester derivatives through a two-step reductive amination procedure with either simple amines or α-amino esters. AcOH and NaBH(3)CN are the additive and reducing agents of choice. The stereoselectivity of the reaction is still an issue, due to the slow imine-enamine equilibria through which the reaction occurs, affording mixtures of diastereoisomers that can be chromatographically separated. Transformation of the ß,γ-diamino esters into pyrrolidinone derivatives allows the configuration assignment of the linear compounds, and constitutes an example of their potential application in the generation of molecular diversity.


Assuntos
Aminoácidos/química , Diaminas/química , Aminação , Cristalografia por Raios X , Ésteres/química , Modelos Moleculares , Oxirredução , Substâncias Redutoras/química , Estereoisomerismo
8.
Expert Opin Ther Pat ; 22(9): 999-1017, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22835143

RESUMO

INTRODUCTION: Thermosensory channels are a subfamily of the transient receptor potential (TRP) channel family that are activated by changes in the environmental temperature. These channels, known as thermoTRPs, cover the entire spectrum of temperatures, from noxious cold (< 15°C) to injurious heat (> 42°C). In addition, dysfunction of these channels contributes to the thermal hypersensitivity that accompanies painful conditions. Moreover, because of their wide tissue and cellular distribution, thermoTRPs are also involved in the pathophysiology of several diseases, from inflammation to cancer. AREAS COVERED: Although the number of thermoTRPs is increasing with the identification of novel members such as TRPM3, we will cover the recent advances in the pharmacology of the classical thermosensory channels, namely TRPV1, TRPV2, TRPV3, TRPV4, TRPM8 and TRPA1. This review will focus on the therapeutic progress carried out for all these channels and will highlight the tenet that TRPV1, TRPM8 and TRPA1 are the most exploited channels, and that the interest on TRPV3 and TRPV4 is growing with the first TRPV3 antagonist that moves into Phase-II clinical trials. In contrast, the pharmacology of TRPV2 is yet in its infancy. EXPERT OPINION: Despite the tremendous academic and industrial investment to develop therapeutic modulators of thermoTRPs, it apparently seems that we are still far from the first successful product, although hope is maintained high for all compounds currently in clinical trials. A major concern has been the appearance of side effects. A better knowledge of the thermosensory protein networks (signal-plexes), along with the application of system biology approaches may provide novel strategies to modulate thermoTRPs activity with improved therapeutic index. A case in point is TRPV1, where acting on interacting proteins is providing new therapeutic opportunities.


Assuntos
Dor/fisiopatologia , Canais de Cátion TRPV/metabolismo , Animais , Temperatura Baixa , Temperatura Alta , Humanos , Inflamação/fisiopatologia , Neoplasias/fisiopatologia , Patentes como Assunto
9.
Biochemistry ; 51(16): 3470-84, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22471585

RESUMO

Snapin is a 15 kDa protein present in neuronal and non-neuronal cells that has been implicated in the regulation of exocytosis and endocytosis. Protein kinase A (PKA) phosphorylates Snapin at Ser-50, modulating its function. Likewise, mutation of Cys-66, which mediates protein dimerization, impairs its cellular activity. Here, we have investigated the impact of mutating these two positions on protein oligomerization, structure, and thermal stability, along with the interaction with SNARE proteins. We found that recombinant purified Snapin in solution appears mainly as dimers in equilibrium with tetramers. The protein exhibits modest secondary structure elements and notable thermal stability. Mutation of Cys-66 to Ser abolished subunit dimerization, but not higher-order oligomers. This mutant augmented the presence of α-helical structure and slightly increased the protein thermal stability. Similarly, the S50A mutant, mimicking the unphosphorylated protein, also exhibited a higher helical secondary structure content than the wild type, along with greater thermal stability. In contrast, replacement of Ser-50 with Asp (S50D), emulating the protein-phosphorylated state, produced a loss of α-helical structure, concomitant with a decrease in protein thermal stability. In vitro, the wild type and mutants weakly interacted with SNAP-25 and the reconstituted SNARE complex, although S50D exhibited the strongest binding to the SNARE complex, consistent with the observed higher cellular activity of PKA-phosphorylated Snapin. Our observations suggest that the stronger binding of S50D to SNAREs might be due to a destabilization of tetrameric assemblies of Snapin that favor the interaction of protein dimers with the SNARE proteins. Therefore, phosphorylation of Ser-50 has an important impact on the protein structure and stability that appears to underlie its functional modulation.


Assuntos
Cisteína/genética , Mutação , Serina/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Proteínas de Transporte Vesicular/metabolismo
10.
J Inflamm Res ; 4: 67-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22096371

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) is a thermoreceptor that responds to noxious temperatures, as well as to chemical agonists, such as vanilloids and protons. In addition, its channel activity is notably potentiated by proinflammatory mediators released upon tissue damage. The TRPV1 contribution to sensory neuron sensitization by proalgesic agents has signaled this receptor as a prime target for analgesic and anti-inflammatory drug intervention. However, TRPV1 antagonists have notably failed in clinical and preclinical studies because of their unwanted side effects. Recent reports have unveiled previously unrecognized anti-inflammatory and protective functions of TRPV1 in several diseases. For instance, this channel has been suggested to play an anti-inflammatory role in sepsis. Therefore, the use of potent TRPV1 antagonists as a general strategy to treat inflammation must be cautiously considered, given the deleterious effects that may arise from inhibiting the population of channels that have a protective function. The use of TRPV1 antagonists may be limited to treating those pathologies where enhanced receptor activity contributes to the inflamed state. Alternatively, therapeutic paradigms, such as reduction of inflammatory-mediated increase of receptor expression in the cell surface, may be a better strategy to prevent abrogation of the TRPV1 subpopulation involved in anti-inflammatory and protective processes.

11.
J Neurochem ; 117(6): 1009-19, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21480901

RESUMO

Lidocaine is a local anaesthetic that blocks sodium channels, but also inhibits several ligand-gated ion-channels. The aim of this work was to unravel the mechanisms by which lidocaine blocks Torpedo nicotinic receptors transplanted to Xenopus oocytes. Acetylcholine-elicited currents were reversibly blocked by lidocaine, in a concentration dependent manner. At doses lower than the IC(50) , lidocaine blocked nicotinic receptors only at negative potentials, indicating an open-channel blockade; the binding site within the channel was at about 30% of the way through the electrical field across the membrane. In the presence of higher lidocaine doses, nicotinic receptors were blocked both at positive and negative potentials, acetylcholine dose-response curve shifted to the right and lidocaine pre-application, before its co-application with acetylcholine, enhanced the current inhibition, indicating all together that lidocaine also blocked resting receptors; besides, it increased the current decay rate. When lidocaine, at low doses, was co-applied with 2-(triethylammonio)-N-(2,6-dimethylphenyl) acetamide bromide, edrophonium or 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide, which are quaternary-ammonium molecules that also blocked nicotinic receptors, there was an additive inhibitory effect, indicating that these molecules bound to different sites within the channel pore. These results prove that lidocaine blocks nicotinic receptors by several independent mechanisms and evidence the diverse and complex modulation of this receptor by structurally related molecules.


Assuntos
Anestésicos Locais/farmacologia , Lidocaína/farmacologia , Antagonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Receptores Nicotínicos/fisiologia , Acetilcolina/farmacologia , Animais , Benzenamina, 4,4'-(3-oxo-1,5-pentanodi-il)bis(N,N-dimetil-N-2-propenil-), Dibrometo/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Edrofônio/farmacologia , Feminino , Técnicas In Vitro , Ativação do Canal Iônico , Lidocaína/análogos & derivados , Potenciais da Membrana/efeitos dos fármacos , Oócitos/fisiologia , Torpedo , Xenopus laevis
12.
Pharmaceuticals (Basel) ; 5(1): 16-48, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24288041

RESUMO

One approach to develop successful pain therapies is the modulation of dysfunctional ion channels that contribute to the detection of thermal, mechanical and chemical painful stimuli. These ion channels, known as thermoTRPs, promote the sensitization and activation of primary sensory neurons known as nociceptors. Pharmacological blockade and genetic deletion of thermoTRP have validated these channels as therapeutic targets for pain intervention. Several thermoTRP modulators have progressed towards clinical development, although most failed because of the appearance of unpredicted side effects. Thus, there is yet a need to develop novel channel modulators with improved therapeutic index. Here, we review the current state-of-the art and illustrate new pharmacological paradigms based on TRPV1 that include: (i) the identification of activity-dependent modulators of this thermoTRP channel; (ii) the design of allosteric modulators that interfere with protein-protein interaction involved in the functional coupling of stimulus sensing and gate opening; and (iii) the development of compounds that abrogate the inflammation-mediated increase of receptor expression in the neuronal surface. These new sites of action represent novel strategies to modulate pathologically active TRPV1, while minimizing an effect on the TRPV1 subpopulation involved in physiological and protective roles, thus increasing their potential therapeutic use.

13.
Pharmaceutics ; 3(4): 932-53, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24309315

RESUMO

Ion channels are involved in a broad range of physiological and pathological processes. The implications of ion channels in a variety of diseases, including diabetes, epilepsy, hypertension, cancer and even chronic pain, have signaled them as pivotal drug targets. Thus far, drugs targeting ion channels were developed without detailed knowledge of the molecular interactions between the lead compounds and the target channels. In recent years, however, the emergence of high-resolution structures for a plethora of ion channels paves the way for computer-assisted drug design. Currently, available functional and structural data provide an attractive platform to generate models that combine substrate-based and protein-based approaches. In silico approaches include homology modeling, quantitative structure-activity relationships, virtual ligand screening, similarity and pharmacophore searching, data mining, and data analysis tools. These strategies have been frequently used in the discovery and optimization of novel molecules with enhanced affinity and specificity for the selected therapeutic targets. In this review we summarize recent applications of in silico methods that are being used for the development of ion channel drugs.

14.
Mol Membr Biol ; 26(5): 265-78, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19568979

RESUMO

Adrenergic receptors are integral membrane proteins involved in cellular signalling that belong to the G protein-coupled receptors. Synthetic peptides resembling the putative transmembrane (TM) segments TM4, TM6 and TM7, of the human alpha2-adrenergic receptor subtype C10 (P08913) and defined lipid vesicles were used to assess protein-lipid interactions that might be relevant to receptor structure/function. P6 peptide contains the hydrophobic core of TM6 plus the N-terminal hydrophilic motif REKR, while peptides P4 and P7 contained just the hydrophobic stretches of TM4 and TM7, respectively. All the peptides increase their helical tendency at moderate concentrations of TFE (30-50%) and in presence of 1,2-dielaidoyl-sn-glycero-3-phosphatidylethanolamine (DEPE) lipids. However, only P6 displays up to 19% of alpha-helix in the presence of just the DEPE lipids, evidences a transmembrane orientation and stabilizes the Lalpha lipid phase. Conversely, P4 and P7 peptides form only stable beta-sheet structures in DEPE and favour the non-lamellar, inverted hexagonal (H(II)) phase of DEPE by lowering its phase transition temperature. This study highlights the potential of using synthetic peptides derived from the amino acid sequence in the native proteins as templates to understand the behaviour of the transmembrane segments and underline the importance of interfacial anchoring interactions to meet hydrophobic matching requirements and define membrane organization.


Assuntos
Membrana Celular/metabolismo , Fragmentos de Peptídeos/química , Receptores Adrenérgicos alfa 2/química , Receptores Adrenérgicos alfa 2/metabolismo , Varredura Diferencial de Calorimetria , Membrana Celular/química , Fluorescência , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Triptofano/metabolismo
15.
Biophys J ; 93(7): 2530-41, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17545235

RESUMO

Heterotrimeric G-proteins interact with membranes. They accumulate around membrane receptors and propagate messages to effectors localized in different cellular compartments. G-protein-lipid interactions regulate G-protein cellular localization and activity. Although we recently found that the Gbetagamma dimer drives the interaction of G-proteins with nonlamellar-prone membranes, little is known about the molecular basis of this interaction. Here, we investigated the interaction of the C-terminus of the Ggamma(2) protein (P(gamma)-FN) with model membranes and those of its peptide (P(gamma)) and farnesyl (FN) moieties alone. X-ray diffraction and differential scanning calorimetry demonstrated that P(gamma)-FN, segregated into P(gamma)-FN-poor and -rich domains in phosphatidylethanolamine (PE) and phosphatidylserine (PS) membranes. In PE membranes, FN increased the nonlamellar phase propensity. Fourier transform infrared spectroscopy experiments showed that P(gamma) and P(gamma)-FN interact with the polar and interfacial regions of PE and PS bilayers. The binding of P(gamma)-FN to model membranes is due to the FN group and positively charged amino acids near this lipid. On the other hand, membrane lipids partially altered P(gamma)-FN structure, in turn increasing the fluidity of PS membranes. These data highlight the relevance of the interaction of the C-terminal region of the Ggamma protein with the cell membrane and its effect on membrane structure.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP/química , Animais , Varredura Diferencial de Calorimetria , Bovinos , Membrana Celular/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Lipídeos/química , Peptídeos/química , Fosfolipídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
16.
J Mol Neurosci ; 30(1-2): 5-6, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17192603

RESUMO

In vitro studies carried out on liposomes of defined composition showed that nicotinic acetylcholine receptors (nAChRs) are fully functional when they are reconstituted in a heterogeneous lipid matrix, such as that provided by crude soybean (asolectin [R-Aso]) lipids. However, when they are reconstituted in plain phosphatidylcholine (R-PC) lipids, their functional activity is completely lost (Fong and McNamee, 1986). This kind of study also pointed out that phosphatidic acid (PA) and cholesterol (Chol) play an important role in preserving the ability of this protein to exhibit an optimal channel activity (Fong and McNamee, 1986). Furthermore, it has been shown recently that nAChR, itself, induces the formation of specific PA-rich lipid domains (Poveda et al., 2002). Because Xenopus oocytes incorporate functionally into their plasma membrane nAChRs after intracellular injection of liposomes bearing this protein (Morales et al., 1995), the aim of this work was to determine the effect of the reconstitution lipid matrix on the functional properties of the transplanted nAChRs.


Assuntos
Lipídeos/farmacologia , Receptores Nicotínicos/fisiologia , Acetilcolina/farmacologia , Animais , Membrana Celular/fisiologia , Colesterol/farmacologia , Técnicas de Patch-Clamp , Fosfatidilcolinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Torpedo
17.
J Mol Neurosci ; 30(1-2): 121-4, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17192656

RESUMO

Ligand-gated ion channels (LGICs) constitute an important family of complex membrane proteins acting as receptors for neurotransmitters (Barnard, 1992; Ortells and Lunt, 1995). The nicotinic acetylcholine receptor (nAChR) from Torpedo is the most extensively studied member of the LGIC family and consists of a pentameric transmembrane glycoprotein composed of four different polypeptide subunits (alpha, beta, gamma, and delta) in a 2:1:1:1 stoichiometry (Galzi and Changeux, 1995; Hucho et al., 1996) that are arranged pseudosymmetrically around a central cation-selective ion channel. Conformational transitions, from the closed (nonconducting), to agonist-induced open (ion-conducting), to desensitized (nonconducting) states, are critical for functioning of the nAChR (Karlin, 2002). The ability of the nAChR to undergo these transitions is profoundly influenced by the lipid composition of the bilayer (Barrantes, 2004). Despite existing information on lipid dependence of AChR function, no satisfactory explanation has been given on the molecular events by which specific lipids exert such effects on the activity of an integral membrane protein. To date, several hypotheses have been entertained, including (1) indirect effects of lipids through the alteration of properties of the bilayer, such as fluidity (an optimal fluidity hypothesis [Fong and McNamee, 1986]) or membrane curvature and lateral pressure (Cantor, 1997; de Kruijff, 1997), or (2) direct effects through binding of lipids to defined sites on the transmembrane portion of the protein (Jones and McNamee, 1988; Blanton and Wang, 1990; Fernández et al., 1993; Fernández-Ballester et al., 1994), which has led to the postulation of a possible role of certain lipids as peculiar allosteric ligands of the protein. In this paper we have reconstituted purified AChRs from Torpedo into complex multicomponent lipid vesicles in which the phospholipid composition has been systematically altered. Stopped-flow rapid kinetics of cation translocation and Fourier transform-infrared (FT-IR) spectroscopy studies have been used to illustrate the lipid dependence of both AChR function and AChR secondary structure, respectively.


Assuntos
Fosfolipídeos/farmacologia , Receptores Nicotínicos/química , Receptores Nicotínicos/fisiologia , Animais , Colesterol/farmacologia , Cinética , Lipídeos de Membrana/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Torpedo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...