Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 1): 129324, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228210

RESUMO

In the rapidly evolving landscape of silver nanoparticles (Ag NPs) synthesis, the focus has predominantly been on plant-derived sources, leaving the realm of biological or animal origins relatively uncharted. Breaking new ground, our study introduces a pioneering approach: the creation of Ag NPs using marine fish collagen, termed ClAg NPs, and offers a comprehensive exploration of their diverse attributes. To begin, we meticulously characterized ClAg NPs, revealing their spherical morphology, strong crystalline structure, and average diameter of 5 to 100 nm. These NPs showed potent antibacterial activity, notably against S. aureus (gram-positive), surpassing their efficacy against S. typhi (gram-negative). Additionally, ClAg NPs effectively hindered the growth of MRSA biofilms at 500 µg/mL. Impressively, they demonstrated substantial antioxidant capabilities, out performing standard gallic acid. Although higher concentrations of ClAg NPs induced hemolysis (41.804 %), lower concentrations remained non hemolytic. Further evaluations delved into the safety and potential applications of ClAg NPs. In vitro cytotoxicity studies on HEK 293 and HeLa cells revealed dose-dependent toxicity, with IC50 of 75.28 µg/mL and 79.13 µg/mL, respectively. Furthermore, ClAg NPs affected seed germination, root, and shoot lengths in Mung plants, underscoring their relevance in agriculture. Lastly, zebrafish embryo toxicity assays revealed notable effects, particularly at 500 µg/mL, on embryo morphology and survival rates at 96 hpf. In conclusion, our study pioneers the synthesis and multifaceted evaluation of ClAg NPs, offering promise for their use as versatile nano therapeutics in the medical field and as high-value collagen-based nanobiomaterial with minimal environmental impact.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Humanos , Prata/química , Nanopartículas Metálicas/química , Peixe-Zebra , Células HeLa , Staphylococcus aureus , Células HEK293 , Antibacterianos/farmacologia , Antibacterianos/química
2.
Int J Biol Macromol ; 233: 123514, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739049

RESUMO

Nano-based drug delivery research is increasing due to the therapeutic applications for human health care. However, traditional chemical capping-based synthesis methods lead to unwanted toxicity effects. Hence, there is an urgent need for green synthesis-based and biocompatible synthesis methods. The current work describes for the first time the green synthesis of Moringa gum-capped MgO nanoparticles (Mgm-MgO NPs). Their antioxidant activity, hemolysis potential, cytotoxicity, phytotoxicity, toxicity by chorioallantoic membrane (CAM) chick embryo assay and in vivo toxicity in zebrafish embryos were described. The Mgm-MgO NPs exhibited significant antioxidant activity. The Mgm-MgO NPs at 500 µg/ml produced significant hemolysis (72.54 %), while lower concentrations did not. Besides, the cytotoxicity assessment of the Mgm-MgO NPs was conducted in PA-1 cells from human ovarian teratocarcinoma by MTT assay. The Mgm-MgO NPs (0.1-500 µg/ml) considerably reduced the viability of PA-1 cells. Furthermore, Mgm-MgO NPs had no significant effect on seed germination but had a significant effect on root and shoot length of mungbean (Vigna radiata). Additionally, the CAM assay was used to analyze the antiangiogenic potential of Mgm-MgO NPs, exhibiting no significant alterations after 72 h. Finally, the zebrafish embryotoxicity assay revealed that the Mgm-MgO NPs (0.1-500 µg/ml) did not affect morphology, mortality or survival rate.


Assuntos
Nanopartículas Metálicas , Moringa oleifera , Nanopartículas , Embrião de Galinha , Animais , Humanos , Óxido de Magnésio/farmacologia , Peixe-Zebra , Antioxidantes , Hemólise
3.
Environ Res ; 213: 113655, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35716813

RESUMO

In the current scenario where more and more products containing nanomaterials are on the technological or pharmaceutical market, it is crucial to have a thorough knowledge of their toxicity before proposing possible applications. A proper analysis of the toxicity of the nanoproducts should include both in vitro and in vivo biological approaches and should consider that the synthesis and purification methods of nanomaterials may affect such toxicity. In the current work, the green synthesis of laminarin embedded ZnO nanoparticles (Lm-ZnO NPs) and their based chitosan capped ZnO nanocomposites (Ch-Lm-ZnO NCmps) is described for the first time. Furthermore, the evaluation of their in vitro cytotoxicity, phytotoxicity, and in vivo (Zebrafish embryo) toxicity was described. First, the green synthesized Lm-ZnO NPs and Ch-Lm-ZnO NCmps were fully physicochemically characterized. Lm-ZnO NPs were greatly agglomerated and had a spindle morphology ranging from 100 to 350 nm, while Ch-Lm-ZnO NCmps had irregular rod shape with flake-like structure clusters randomly aggregated with diverse sizes ranging from 20 to 250 nm. The in vitro cytotoxicity assessment of the green synthesized Lm-ZnO NPs and Ch-Lm-ZnO NCmps was carried out in normal human dermal fibroblasts (HDF) cells and human colon cancer (HT-29) cells by MTT assay. Lm-ZnO NPs and Ch-Lm-ZnO NCmps (0.1-500 µg/mL), significantly inhibited the viability of both cell lines, revealing dose-dependent cytotoxicity. Besides, the Lm-ZnO NPs and Ch-Lm-ZnO NCmps significantly affected seed germination and roots and shoots length of mung (Vigna radiata). Moreover, the zebrafish embryo toxicity of Lm-ZnO NPs and Ch-Lm-ZnO NCmps among the various concentrations used (0.1-500 µg/mL) caused deformities, increased mortality and decreased the survival rate of zebrafish embryo dose-dependently.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Quitosana/química , Quitosana/toxicidade , Glucanos , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas/química , Peixe-Zebra , Óxido de Zinco/química , Óxido de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...