Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991910

RESUMO

Ocean color is the result of absorption and scattering, as light interacts with the water and the optically active constituents. The measurement of ocean color changes enables monitoring of these constituents (dissolved or particulate materials). The main objective of this research is to use digital images to estimate the light attenuation coefficient (Kd), the Secchi disk depth (ZSD), and the chlorophyll a (Chla) concentration and to optically classify plots of seawater using the criteria proposed by Jerlov and Forel using digital images captured at the ocean surface. The database used in this study was obtained from seven oceanographic cruises performed in oceanic and coastal areas. Three approaches were developed for each parameter: a general approach that can be applied under any optical condition, one for oceanic conditions, and another for coastal conditions. The results of the coastal approach showed higher correlations between the modeled and validation data, with rp values of 0.80 for Kd, 0.90 for ZSD, 0.85 for Chla, 0.73 for Jerlov, and 0.95 for Forel-Ule. The oceanic approach failed to detect significant changes in a digital photograph. The most precise results were obtained when images were captured at 45° (n = 22; Fr cal=11.02>Fr crit=5.99). Therefore, to ensure precise results, the angle of photography is key. This methodology can be used in citizen science programs to estimate ZSD, Kd, and the Jerlov scale.

2.
Sensors (Basel) ; 19(15)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366087

RESUMO

The baseline of a specific variable defines the average behavior of that variable and it must be built from long data series that represent its spatial and temporal variability. In coastal and marine waters, phytoplankton can produce blooms characterized by a wide range of total cells number or chlorophyll a concentration. Classifying a phytoplankton abundance increase as a bloom depends on the species, the study area and the season. The objective of this study was to define the baseline of satellite absorption coefficients in Todos Santos Bay (Baja California, Mexico) to determine the presence of phytoplankton blooms based on the satellite inherent optical properties index (satellite IOP index). Two field points were selected according to historical bloom reports. To build the baseline, the data of phytoplankton absorption coefficients ( a p h y , G I O P ) and detritus plus colored dissolved organic matter (CDOM) ( a d C D O M , G I O P ) from the generalized inherent optical property (GIOP) satellite model of the NASA moderate resolution imaging spectroradiometer (MODIS-Aqua) sensor was studied for the period 2003 to 2016. Field data taken during a phytoplankton bloom event on June 2017 was used to validate the use of satellite products. The association between field and satellite data had a significant positive correlation. The satellite baseline detected a trend change from high values to low values of the satellite IOP index since 2010. Improved wastewater treatment to waters discharged into the Bay, and increased aquaculture of filter-feeding mollusks could have been the cause. The methodology proposed in this study can be a supplementary tool for permanent in situ monitoring programs. This methodology offers several advantages: A complete spatial coverage of the specific coastal area under study, appropriate temporal resolution and a tool for building an objective baseline to detect deviation from average conditions during phytoplankton bloom events.


Assuntos
Técnicas Biossensoriais , Diatomáceas/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Fitoplâncton/crescimento & desenvolvimento , Clorofila/análise , Eutrofização , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...