Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Vaccines (Basel) ; 12(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38675734

RESUMO

Efficacy data on two malaria vaccines, RTS,S and R21, targeting Plasmodium falciparum circumsporozoite protein (PfCSP), are encouraging. Efficacy may be improved by induction of additional antibodies to neutralizing epitopes outside of the central immunodominant repeat domain of PfCSP. We designed four rPfCSP-based vaccines in an effort to improve the diversity of the antibody response. We also evaluated P. falciparum merozoite surface protein 8 (PfMSP8) as a malaria-specific carrier protein as an alternative to hepatitis B surface antigen. We measured the magnitude, specificity, subclass, avidity, durability, and efficacy of vaccine-induced antibodies in outbred CD1 mice. In comparison to N-terminal- or C-terminal-focused constructs, immunization with near full-length vaccines, rPfCSP (#1) or the chimeric rPfCSP/8 (#2), markedly increased the breadth of B cell epitopes recognized covering the N-terminal domain, junctional region, and central repeat. Both rPfCSP (#1) and rPfCSP/8 (#2) also elicited a high proportion of antibodies to conformation-dependent epitopes in the C-terminus of PfCSP. Fusion of PfCSP to PfMSP8 shifted the specificity of the T cell response away from PfCSP toward PfMSP8 epitopes. Challenge studies with transgenic Plasmodium yoelii sporozoites expressing PfCSP demonstrated high and consistent sterile protection following rPfCSP/8 (#2) immunization. Of note, antibodies to conformational C-terminal epitopes were not required for protection. These results indicate that inclusion of the N-terminal domain of PfCSP can drive responses to protective, repeat, and non-repeat B cell epitopes and that PfMSP8 is an effective carrier for induction of high-titer, durable anti-PfCSP antibodies.

2.
Proc Natl Acad Sci U S A ; 121(10): e2317735121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408246

RESUMO

Chimeric antigen receptor (CAR) T cell dysfunction is a major barrier to achieving lasting remission in hematologic cancers, especially in chronic lymphocytic leukemia (CLL). We have shown previously that Δ133p53α, an endogenous isoform of the human TP53 gene, decreases in expression with age in human T cells, and that reconstitution of Δ133p53α in poorly functional T cells can rescue proliferation [A. M. Mondal et al., J. Clin. Invest. 123, 5247-5257 (2013)]. Although Δ133p53α lacks a transactivation domain, it can form heterooligomers with full-length p53 and modulate the p53-mediated stress response [I. Horikawa et al., Cell Death Differ. 24, 1017-1028 (2017)]. Here, we show that constitutive expression of Δ133p53α potentiates the anti-tumor activity of CD19-directed CAR T cells and limits dysfunction under conditions of high tumor burden and metabolic stress. We demonstrate that Δ133p53α-expressing CAR T cells exhibit a robust metabolic phenotype, maintaining the ability to execute effector functions and continue proliferating under nutrient-limiting conditions, in part due to upregulation of critical biosynthetic processes and improved mitochondrial function. Importantly, we show that our strategy to constitutively express Δ133p53α improves the anti-tumor efficacy of CAR T cells generated from CLL patients that previously failed CAR T cell therapy. More broadly, our results point to the potential role of the p53-mediated stress response in limiting the prolonged antitumor functions required for complete tumor clearance in patients with high disease burden, suggesting that modulation of the p53 signaling network with Δ133p53α may represent a translationally viable strategy for improving CAR T cell therapy.


Assuntos
Leucemia Linfocítica Crônica de Células B , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Antígenos CD19 , Terapia Baseada em Transplante de Células e Tecidos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Sci Transl Med ; 15(714): eadi1145, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37651540

RESUMO

In the absence of cell surface cancer-specific antigens, immunotherapies such as chimeric antigen receptor (CAR) T cells, monoclonal antibodies, or bispecific T cell engagers typically target lineage antigens. Currently, such immunotherapies are individually designed and tested for each disease. This approach is inefficient and limited to a few lineage antigens for which the on-target/off-tumor toxicities are clinically tolerated. Here, we sought to develop a universal CAR T cell therapy for blood cancers directed against the pan-leukocyte marker CD45. To protect healthy hematopoietic cells, including CAR T cells, from CD45-directed on-target/off-tumor toxicity while preserving the essential functions of CD45, we mapped the epitope on CD45 that is targeted by the CAR and used CRISPR adenine base editing to install a function-preserving mutation sufficient to evade CAR T cell recognition. Epitope-edited CD45 CAR T cells were fratricide resistant and effective against patient-derived acute myeloid leukemia, B cell lymphoma, and acute T cell leukemia. Epitope-edited hematopoietic stem cells (HSCs) were protected from CAR T cells and, unlike CD45 knockout cells, could engraft, persist, and differentiate in vivo. Ex vivo epitope editing in HSCs and T cells enables the safe and effective use of CD45-directed CAR T cells and bispecific T cell engagers for the universal treatment of hematologic malignancies and might be exploited for other diseases requiring intensive hematopoietic ablation.


Assuntos
Neoplasias Hematológicas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Epitopos , Edição de Genes , Neoplasias Hematológicas/terapia , Imunoterapia
4.
Transfus Apher Sci ; 61(3): 103341, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34916156

RESUMO

Critical antibody titers have been described as factors associated with hemolysis in ABO plasma-incompatible platelet (PLT) transfusions. This study was carried out to describe the frequency of high-titers anti-A and antiB IgM and IgG antibodies in group O apheresis platelet donors, and to explore differences according to the donor characteristics. A cross-sectional study was carried out at the Blood Bank of a National Hospital in Peru from January to March 2019. IgM and IgG antibodies against A1 and B antigens were quantified in 339 platelet donors using the direct hemagglutination technique and the solid-phase adherence technique, respectively. For analysis purposes, two cut-off points; ≥128 and ≥64, were used to define a critical titer for IgM due to a lack of consensus. An IgG titer of ≥256 was also defined as critical. Of the donors, 22.1 % had critical IgM titers when the cut-off point was defined as ≥128. However, when the IgM cut-off was ≥64, the frequency of platelet donors with critical titers increased to 54.0 %. The frequency of donors with critical IgG titers was 23.5 %. Higher IgG titers were associated with female donors while higher IgM titers were negative associated with age. One in two or three platelet donors, depending on the cutoff point used to define a critical IgM titer, had at least one critical titer of anti-A or anti-B antibodies. Early identification of platelet donors with critical antibody titers could prevent passive transfusion of ABO antibodies to non-isogroup recipients.


Assuntos
Incompatibilidade de Grupos Sanguíneos , Reação Transfusional , Sistema ABO de Grupos Sanguíneos , Estudos Transversais , Feminino , Humanos , Imunoglobulina G , Imunoglobulina M , Peru
5.
J Immunol ; 206(8): 1817-1831, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33789984

RESUMO

Plasmodium falciparum merozoite surface protein (PfMSP)2 is a target of parasite-neutralizing Abs. Inclusion of recombinant PfMSP2 (rPfMSP2) as a component of a multivalent malaria vaccine is of interest, but presents challenges. Previously, we used the highly immunogenic PfMSP8 as a carrier to enhance production and/or immunogenicity of malaria vaccine targets. In this study, we exploited the benefits of rPfMSP8 as a carrier to optimize a rPfMSP2-based subunit vaccine. rPfMSP2 and chimeric rPfMSP2/8 vaccines produced in Escherichia coli were evaluated in comparative immunogenicity studies in inbred (CB6F1/J) and outbred (CD1) mice, varying the dose and adjuvant. Immunization of mice with both rPfMSP2-based vaccines elicited high-titer anti-PfMSP2 Abs that recognized the major allelic variants of PfMSP2. Vaccine-induced T cells recognized epitopes present in both PfMSP2 and the PfMSP8 carrier. Competition assays revealed differences in Ab specificities induced by the two rPfMSP2-based vaccines, with evidence of epitope masking by rPfMSP2-associated fibrils. In contrast to aluminum hydroxide (Alum) as adjuvant, formulation of rPfMSP2 vaccines with glucopyranosyl lipid adjuvant-stable emulsion, a synthetic TLR4 agonist, elicited Th1-associated cytokines, shifting production of Abs to cytophilic IgG subclasses. The rPfMSP2/8 + glucopyranosyl lipid adjuvant-stable emulsion formulation induced significantly higher Ab titers with superior durability and capacity to opsonize P. falciparum merozoites for phagocytosis. Immunization with a trivalent vaccine including PfMSP2/8, PfMSP1/8, and the P. falciparum 25 kDa sexual stage antigen fused to PfMSP8 (Pfs25/8) induced high levels of Abs specific for epitopes in each targeted domain, with no evidence of antigenic competition. These results are highly encouraging for the addition of rPfMSP2/8 as a component of an efficacious, multivalent, multistage malaria vaccine.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Merozoítos/metabolismo , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Células Th1/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/genética , Mapeamento de Epitopos , Feminino , Glucosídeos , Epitopos Imunodominantes , Imunoglobulina G/metabolismo , Lipídeo A , Vacinas Antimaláricas/genética , Masculino , Merozoítos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagocitose , Proteínas de Protozoários/genética
6.
Sci Rep ; 9(1): 9022, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227760

RESUMO

Vaccine trials and cohort studies in Plasmodium falciparum endemic areas indicate that naturally-acquired and vaccine-induced antibodies to merozoite surface protein 2 (MSP2) are associated with resistance to malaria. These data indicate that PfMSP2 has significant potential as a component of a multi-antigen malaria vaccine. To overcome challenges encountered with subunit malaria vaccines, we established that the use of highly immunogenic rPfMSP8 as a carrier protein for leading vaccine candidates rPfMSP119 and rPfs25 facilitated antigen production, minimized antigenic competition and enhanced induction of functional antibodies. We applied this strategy to optimize a rPfMSP2 (3D7)-based subunit vaccine by producing unfused rPfMSP2 or chimeric rPfMSP2/8 in Escherichia coli. rPfMSP2 formed fibrils, which induced splenocyte proliferation in an antigen receptor-independent, TLR2-dependent manner. However, fusion to rPfMSP8 prevented rPfMSP2 amyloid-like fibril formation. Immunization of rabbits elicited high-titer anti-PfMSP2 antibodies that recognized rPfMSP2 of the 3D7 and FC27 alleles, as well as native PfMSP2. Competition assays revealed a difference in the specificity of antibodies induced by the two rPfMSP2-based vaccines, with evidence of epitope masking by rPfMSP2-associated fibrils. Rabbit anti-PfMSP2/8 was superior to rPfMSP2-elicited antibody at opsonizing P. falciparum merozoites for phagocytosis. These data establish rPfMSP8 as an effective carrier for a PfMSP2-based subunit malaria vaccine.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Proteínas Opsonizantes/imunologia , Proteínas de Protozoários/imunologia , Vacinação/métodos , Animais , Especificidade de Anticorpos/imunologia , Antígenos de Protozoários/química , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/química , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Merozoítos/imunologia , Fagocitose/imunologia , Proteínas de Protozoários/química , Coelhos , Especificidade da Espécie , Células THP-1
7.
Am J Physiol Endocrinol Metab ; 315(4): E676-E693, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509432

RESUMO

Obesity is associated with adipose tissue inflammation that contributes to insulin resistance. Zinc finger protein 36 (Zfp36) is an mRNA-binding protein that reduces inflammation by binding to cytokine transcripts and promoting their degradation. We hypothesized that myeloid-specific deficiency of Zfp36 would lead to increased adipose tissue inflammation and reduced insulin sensitivity in diet-induced obese mice. As expected, wild-type (Control) mice became obese and diabetic on a high-fat diet, and obese mice with myeloid-specific loss of Zfp36 [knockout (KO)] demonstrated increased adipose tissue and liver cytokine mRNA expression compared with Control mice. Unexpectedly, in glucose tolerance testing and hyperinsulinemic-euglycemic clamp studies, myeloid Zfp36 KO mice demonstrated improved insulin sensitivity compared with Control mice. Obese KO and Control mice had similar macrophage infiltration of the adipose depots and similar peripheral cytokine levels, but lean and obese KO mice demonstrated increased Kupffer cell (KC; the hepatic macrophage)-expressed Mac2 compared with lean Control mice. Insulin resistance in obese Control mice was associated with enhanced Zfp36 expression in KCs. Compared with Control mice, KO mice demonstrated increased hepatic mRNA expression of a multitude of classical (M1) inflammatory cytokines/chemokines, and this M1-inflammatory hepatic milieu was associated with enhanced nuclear localization of IKKß and the p65 subunit of NF-κB. Our data confirm the important role of innate immune cells in regulating hepatic insulin sensitivity and lipid metabolism, challenge-prevailing models in which M1 inflammatory responses predict insulin resistance, and indicate that myeloid-expressed Zfp36 modulates the response to insulin in mice.


Assuntos
Tecido Adiposo/metabolismo , Citocinas/genética , Fígado Gorduroso/genética , Inflamação/genética , Resistência à Insulina/genética , Obesidade/genética , Tristetraprolina/genética , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Dieta Hiperlipídica , Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Quinase I-kappa B/imunologia , Quinase I-kappa B/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Tamanho do Órgão , RNA Mensageiro/metabolismo , Fator de Transcrição RelA/imunologia , Fator de Transcrição RelA/metabolismo , Tristetraprolina/imunologia , Tristetraprolina/metabolismo
8.
Cell Cycle ; 13(8): 1256-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24621503

RESUMO

CAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution. In contrast, CAPER was expressed at higher levels in ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) specimens, where it assumed a predominantly nuclear distribution. However, the functional role of CAPER in human breast cancer initiation and progression remained unknown. Here, we used a lentiviral-mediated gene silencing approach to reduce the expression of CAPER in the ER-positive human breast cancer cell line MCF-7. The proliferation and tumorigenicity of MCF-7 cells stably expressing control or human CAPER shRNAs was then determined via both in vitro and in vivo experiments. Knockdown of CAPER expression significantly reduced the proliferation of MCF-7 cells in vitro. Importantly, nude mice injected with MCF-7 cells harboring CAPER shRNAs developed smaller tumors than mice injected with MCF-7 cells harboring control shRNAs. Mechanistically, tumors derived from mice injected with MCF-7 cells harboring CAPER shRNAs displayed reduced expression of the cell cycle regulators PCNA, MCM7, and cyclin D1, and the protein synthesis marker 4EBP1. In conclusion, knockdown of CAPER expression markedly reduced human breast cancer cell proliferation in both in vitro and in vivo settings. Mechanistically, knockdown of CAPER abrogated the activity of proliferative and protein synthesis pathways.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Camundongos Nus , Transplante de Neoplasias , Proteínas Nucleares/genética , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética
9.
Cell Cycle ; 12(10): 1510-20, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23598719

RESUMO

Caveolin-1 (Cav-1) is a critical regulator of tumor progression in a variety of cancers where it has been shown to act as either a tumor suppressor or tumor promoter. In glioblastoma multiforme, it has been previously demonstrated to function as a putative tumor suppressor. Our studies here, using the human glioblastoma-derived cell line U-87MG, further support the role of Cav-1 as a negative regulator of tumor growth. Using a lentiviral transduction approach, we were able to stably overexpress Cav-1 in U-87MG cells. Gene expression microarray analyses demonstrated significant enrichment in gene signatures corresponding to downregulation of MAPK, PI3K/AKT and mTOR signaling, as well as activation of apoptotic pathways in Cav-1-overexpressing U-87MG cells. These same gene signatures were later confirmed at the protein level in vitro. To explore the ability of Cav-1 to regulate tumor growth in vivo, we further show that Cav-1-overexpressing U-87MG cells display reduced tumorigenicity in an ectopic xenograft mouse model, with marked hypoactivation of MAPK and PI3K/mTOR pathways. Finally, we demonstrate that Cav-1 overexpression confers sensitivity to the most commonly used chemotherapy for glioblastoma, temozolomide. In conclusion, Cav-1 negatively regulates key cell growth and survival pathways and may be an effective biomarker for predicting response to chemotherapy in glioblastoma.


Assuntos
Apoptose/efeitos dos fármacos , Caveolina 1/metabolismo , Dacarbazina/análogos & derivados , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Caveolina 1/genética , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Regulação para Baixo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Lentivirus/genética , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Temozolomida , Transplante Heterólogo
10.
Arterioscler Thromb Vasc Biol ; 33(6): 1212-20, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23559629

RESUMO

OBJECTIVE: We studied the expression and function of an mRNA-binding protein, zinc finger protein-36 (ZFP36), in vascular endothelial cells in vivo and in vitro. We tested the hypotheses that ZFP36 regulates inflammation in vascular endothelial cells and that it functions through direct binding to target cytokine mRNAs. We also tested whether ZFP36 inhibits nuclear factor-κB-mediated transcriptional responses in vascular endothelial cells. APPROACH AND RESULTS: ZFP36 was minimally expressed in healthy aorta but was expressed in endothelial cells overlying atherosclerotic lesions in mice and humans. The protein was also expressed in macrophage foam cells of atherosclerosis. ZFP36 was expressed in human aortic endothelial cells in response to bacterial lipopolysaccharide, glucocorticoid, and forskolin, but not oxidized low-density lipoproteins or angiotensin II. Functional studies demonstrated that ZFP36 reduces the expression of inflammatory cytokines in target cells by 2 distinct mechanisms: ZFP36 inhibits nuclear factor-κB transcriptional activation and also binds to cytokine mRNAs, leading to reduced transcript stability. CONCLUSIONS: ZFP36 is expressed in vascular endothelial cells and macrophage foam cells where it inhibits the expression of proinflammatory mRNA transcripts. The anti-inflammatory effects of ZFP36 in endothelial cells occur via both transcriptional and posttranscriptional mechanisms. Our data suggest that enhancing vascular ZFP36 expression might reduce vascular inflammation.


Assuntos
Citocinas/metabolismo , Células Endoteliais/metabolismo , Células Espumosas/metabolismo , Regulação da Expressão Gênica , Tristetraprolina/genética , Animais , Aorta , Aterosclerose/genética , Aterosclerose/fisiopatologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Espumosas/citologia , Humanos , Inflamação/genética , Inflamação/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Valores de Referência , Sensibilidade e Especificidade , Vasculite/genética , Vasculite/prevenção & controle
11.
Am J Pathol ; 181(1): 278-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22698676

RESUMO

Increasing chronological age is the most significant risk factor for human cancer development. To examine the effects of host aging on mammary tumor growth, we used caveolin (Cav)-1 knockout mice as a bona fide model of accelerated host aging. Mammary tumor cells were orthotopically implanted into these distinct microenvironments (Cav-1(+/+) versus Cav-1(-/-) age-matched young female mice). Mammary tumors grown in a Cav-1-deficient tumor microenvironment have an increased stromal content, with vimentin-positive myofibroblasts (a marker associated with oxidative stress) that are also positive for S6-kinase activation (a marker associated with aging). Mammary tumors grown in a Cav-1-deficient tumor microenvironment were more than fivefold larger than tumors grown in a wild-type microenvironment. Thus, a Cav-1-deficient tumor microenvironment provides a fertile soil for breast cancer tumor growth. Interestingly, the mammary tumor-promoting effects of a Cav-1-deficient microenvironment were estrogen and progesterone independent. In this context, chemoprevention was achieved by using the mammalian target of rapamycin (mTOR) inhibitor and anti-aging drug, rapamycin. Systemic rapamycin treatment of mammary tumors grown in a Cav-1-deficient microenvironment significantly inhibited their tumor growth, decreased their stromal content, and reduced the levels of both vimentin and phospho-S6 in Cav-1-deficient cancer-associated fibroblasts. Since stromal loss of Cav-1 is a marker of a lethal tumor microenvironment in breast tumors, these high-risk patients might benefit from treatment with mTOR inhibitors, such as rapamycin or other rapamycin-related compounds (rapalogues).


Assuntos
Envelhecimento/fisiologia , Anticarcinógenos/uso terapêutico , Caveolina 1/fisiologia , Neoplasias Mamárias Animais/prevenção & controle , Sirolimo/uso terapêutico , Animais , Caveolina 1/deficiência , Feminino , Neoplasias Mamárias Animais/irrigação sanguínea , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/fisiopatologia , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Neovascularização Patológica/metabolismo , Ovariectomia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Células Estromais/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Am J Physiol Heart Circ Physiol ; 300(4): H1274-81, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21297026

RESUMO

Caveolin (Cav)-1 has been involved in the pathogenesis of ischemic injuries. For instance, modulations of Cav-1 expression have been reported in animal models of myocardial infarction and cerebral ischemia-reperfusion. Furthermore, ablation of the Cav-1 gene in mice has been shown to increase the extent of ischemic injury in models of cerebral and hindlimb ischemia. Cav-1 has also been suggested to play a role in myocardial ischemic preconditioning. However, the role of Cav-1 in myocardial ischemia (MI)-induced cardiac dysfunction still remains to be determined. We determined the outcome of a permanent left anterior descending coronary artery (LAD) ligation in Cav-1 knockout (KO) mice. Wild-type (WT) and Cav-1 KO mice were subjected to permanent LAD ligation for 24 h. The progression of ischemic injury was monitored by echocardiography, hemodynamic measurements, 2,3,5-triphenyltetrazolium chloride staining, ß-binding analysis, cAMP level measurements, and Western blot analyses. Cav-1 KO mice subjected to LAD ligation display reduced survival compared with WT mice. Despite similar infarct sizes, Cav-1 KO mice subjected to MI showed reduced left ventricular (LV) ejection fraction and fractional shortening as well as increased LV end-diastolic pressures compared with their WT counterparts. Mechanistically, Cav-1 KO mice subjected to MI exhibit reduced ß-adrenergic receptor density at the plasma membrane as well as decreased cAMP levels and PKA phosphorylation. In conclusion, ablation of the Cav-1 gene exacerbates cardiac dysfunction and reduces survival in mice subjected to MI. Mechanistically, Cav-1 KO mice subjected to LAD ligation display abnormalities in ß-adrenergic signaling.


Assuntos
Caveolina 1/deficiência , Infarto do Miocárdio/mortalidade , Animais , Caveolina 1/genética , Caveolina 1/fisiologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia , AMP Cíclico/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/fisiopatologia , Fosforilação , Receptores Adrenérgicos beta/biossíntese , Volume Sistólico/fisiologia , Ultrassonografia
13.
J Virol ; 78(7): 3398-406, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15016862

RESUMO

The molecular and cellular basis of coronavirus neurovirulence is poorly understood. Since neurovirulence may be determined at the early stages of infection of the central nervous system (CNS), we hypothesize that it may depend on the ability of the virus to induce proinflammatory signals from brain cells for the recruitment of blood-derived inflammatory cells. To test this hypothesis, we studied the interaction between coronaviruses (mouse hepatitis virus) of different neurovirulences with primary cell cultures of brain immune cells (astrocytes and microglia) and mouse tissues. We found that the level of neurovirulence of the virus correlates with its differential ability to induce proinflammatory cytokines (interleukin 12 [IL-12] p40, tumor necrosis factor alpha, IL-6, IL-15, and IL-1beta) in astrocytes and microglia and in mouse brains and spinal cords. These findings suggest that coronavirus neurovirulence may depend on a novel discriminatory ability of astrocytes and microglia to induce a proinflammatory response in the CNS.


Assuntos
Astrócitos/metabolismo , Astrócitos/virologia , Coronavirus/patogenicidade , Citocinas/genética , Mediadores da Inflamação/análise , Microglia/metabolismo , Microglia/virologia , Animais , Células Cultivadas , Coronavirus/fisiologia , Citocinas/análise , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Virulência , Replicação Viral
14.
J Neurovirol ; 10(1): 41-51, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14982727

RESUMO

The A59 strain of coronavirus, mouse hepatitis virus (MHV), produces acute hepatitis, meningoencephalitis, and chronic demyelination. The authors have previously shown that the spike (S) glycoprotein gene of MHV contains determinants of virulence, hepatitis, and demyelination. They then identified viruses containing mutations in the S gene that exhibit alterations in viral pathogenesis. In the present study, the authors produced new recombinant viruses with each one of these S gene mutations by site-directed mutagenesis and targeted recombination and studied the effect of each individual mutation on the pathogenesis of the virus. They identified a combination of mutations in the S1 gene (I375M and L652I) that abolishes demyelination. Individual mutation and other combinations of mutations in the S gene only interfere with virulence and hepatitis and only reduce demyelination (I375M), but do not abolish demyelination completely. Thus, demyelination determinants exist within genomic regions on both sides of the hypervariable region, downstream from the receptor-binding domain in the S1 part of the MHV spike glycoprotein gene. The structure and precise function of these regions awaits further investigation.


Assuntos
Infecções por Coronavirus/genética , Infecções por Coronavirus/patologia , Doenças Desmielinizantes/genética , Glicoproteínas de Membrana/genética , Vírus da Hepatite Murina/patogenicidade , Proteínas do Envelope Viral/genética , Animais , Encéfalo/patologia , Encéfalo/virologia , Hepatite Viral Animal/genética , Hepatite Viral Animal/patologia , Fígado/patologia , Fígado/virologia , Camundongos , Vírus da Hepatite Murina/fisiologia , Mutagênese Sítio-Dirigida , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glicoproteína da Espícula de Coronavírus , Medula Espinal/patologia , Medula Espinal/virologia
15.
J Neuroimmunol ; 146(1-2): 140-3, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14698856

RESUMO

Infection of mice with mouse hepatitis virus (MHV) strain A59 results in acute encephalitis, hepatitis, and chronic demyelinating disease. T lymphocytes play an important role in MHV infection, and costimulatory signals are an important component of T cell function. To elucidate the role of the main costimulatory molecule, CD28, in MHV pathogenesis and demyelination, we examined the kinetics of MHV-A59 infection in CD28 knockout mice. MHV-A59-infected CD28 knockout mice developed acute encephalitis and hepatitis, and the same degree of chronic demyelination as normal C57Bl/6 (B6) mice. Thus, CD28, the costimulatory T cell molecule, is not required for MHV infection and MHV-induced demyelination.


Assuntos
Antígenos CD28/genética , Infecções por Coronavirus/imunologia , Coronavirus/imunologia , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/virologia , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/virologia , Antígenos CD28/fisiologia , Infecções por Coronavirus/genética , Doenças Desmielinizantes/imunologia , Fígado/imunologia , Fígado/metabolismo , Fígado/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...