Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Audiol ; 31(2): 359-369, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35436425

RESUMO

PURPOSE: This study aimed to determine whether onset-offset N1-P2 auditory evoked responses differ in amplitude, latency, and offset-to-onset trough-to-peak N1-P2 amplitude ratios (OOAR) between normal hearing (NH) sensitivity and moderate high-frequency sensorineural hearing loss (HFSNHL) groups when stimuli target regions of peripheral hearing sensitivity where the groups are in the normal range (i.e., 500 Hz) versus where they differ regarding presence of hearing loss (i.e., 4000 Hz). METHOD: Onset-offset N1-P2 auditory evoked responses were measured from 10 participants with normal hearing sensitivity and seven participants with moderate HFSNHL using 500-Hz and 4000-Hz narrowband noise (NBN) stimuli. Stimuli were 2000 ms with 40-ms rise-fall times presented at 50 dB SL referenced to stimulus behavioral thresholds. Amplitudes and latencies were analyzed for N1 and P2 onset and offset components via repeated measures analysis of variance (ANOVA). OOARs were compared between groups using one-way ANOVA and across stimuli per group using paired samples t tests. RESULTS: Despite dB SPL stimulus presentation differences between groups, there were no significant differences in individual/absolute amplitude and latency waveform components between groups for either stimulus. Derived comparative calculations of OOAR for 4000-Hz NBN were significantly larger (p < .025; NH: .39; HFSNHL: .62) for the group with HFSNHL than the group with NH sensitivity; 500-Hz NBN OOAR did not reach significance. OOARs revealed no significant difference between stimuli for the group with normal hearing sensitivity, with .38 OOAR for both stimuli (p = .961). OOAR comparisons for the HFSNHL group across stimuli were significant (p = .012), with the 4000-Hz NBN OOAR being nearly double the size of the 500-Hz NBN OOAR. CONCLUSIONS: OOARs may provide insight to the balance of excitatory and inhibitory neural firing in the central auditory nervous system (CANS). Larger OOARs may be a biomarker of reduced CANS inhibition, perhaps indicative of a homeostatic central auditory gain mechanism.


Assuntos
Perda Auditiva Neurossensorial , Percepção da Fala , Estimulação Acústica , Potenciais Evocados Auditivos/fisiologia , Perda Auditiva de Alta Frequência , Humanos , Ruído , Percepção da Fala/fisiologia
2.
Am J Audiol ; 30(2): 423-432, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34057857

RESUMO

Purpose Clinical use of electrophysiologic measures has been limited to use of brief stimuli to evoke responses. While brief stimuli elicit onset responses in individuals with normal hearing and normal central auditory nervous system (CANS) function, responses represent the integrity of a fraction of the mainly excitatory central auditory neurons. Longer stimuli could provide information regarding excitatory and inhibitory CANS function. Our goal was to measure the onset-offset N1-P2 auditory evoked response in subjects with normal hearing and subjects with moderate high-frequency sensorineural hearing loss (HFSNHL) to determine whether the response can be measured in individuals with moderate HFSNHL and, if so, whether waveform components differ between participant groups. Method Waveforms were obtained from 10 participants with normal hearing and seven participants with HFSNHL aged 40-67 years using 2,000-ms broadband noise stimuli with 40-ms rise-fall times presented at 50 dB SL referenced to stimulus threshold. Amplitudes and latencies were analyzed via repeated-measures analysis of variance (ANOVA). N1 and P2 onset latencies were compared to offset counterparts via repeated-measures ANOVA after subtracting 2,000 ms from the offset latencies to account for stimulus duration. Offset-to-onset trough-to-peak amplitude ratios between groups were compared using a one-way ANOVA. Results Responses were evoked from all participants. There were no differences between participant groups for the waveform components measured. Response × Participant Group interactions were not significant. Offset N1-P2 latencies were significantly shorter than onset counterparts after adjusting for stimulus duration (normal hearing: 43 ms shorter; HFSNHL: 47 ms shorter). Conclusions Onset-offset N1-P2 responses were resistant to moderate HFSNHL. It is likely that the onset was elicited by the presentation of a sound in silence and the offset by the change in stimulus envelope from plateau to fall, suggesting an excitatory onset response and an inhibitory-influenced offset response. Results indicated this protocol can be used to investigate CANS function in individuals with moderate HFSNHL. Supplemental Material https://doi.org/10.23641/asha.14669007.


Assuntos
Córtex Auditivo , Perda Auditiva Neurossensorial , Estimulação Acústica , Potenciais Evocados Auditivos , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...