Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 100(4): 1009-1024, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35099815

RESUMO

The habitat preferences of many reef fishes are well established, but the use of space within these habitats by non-site-attached species is poorly studied. The authors examined the space use of a functionally important mesopredator, graysby (Cephalopholis cruentata), on six patch reefs in the Florida Keys. A 1 m2 -scale grid was constructed on each reef and 16 individual C. cruentata were tracked diurnally in situ to identify space use. At the patch reef scale, larger C. cruentata were more active and had larger observed home ranges, although home ranges were also affected by fish density and the abundances of prey and predators. The total time in each 1 m2 grid cell was regressed against a range of fine-scale biotic variables, including multiple variables derived from structure-from-motion three-dimensional digital reconstructions of each reef. Nonetheless, time in grid cells (preferred microhabitats) was only significantly positively correlated with the height of carbonate structures, likely because the cavities they enclose are particularly suitable for predator avoidance, resting and ambushing prey. The ongoing flattening of reefs in the region caused by negative carbonate budgets is thus likely to have significant effects on the abundance and space use of C. cruentata. In addition to examining spatial patterns, we analysed C. cruentata waiting times in each grid cell before moving. These times were best approximated by a truncated power-law (heavy-tailed) distribution, indicating a "bursty" pattern of relatively long periods of inactivity interspersed with multiple periods of activity. Such a pattern has previously been identified in a range of temperate ambush predators, and the authors extend this move-wait behaviour, which may optimize foraging success, to a reef fish for the first time. Understanding how C. cruentata uses space and time is critical to fully identify their functional role and better predict the implications of fishing and loss of reef structure.


Assuntos
Antozoários , Bass , Animais , Carbonatos , Recifes de Corais , Ecossistema , Peixes , Comportamento Predatório
2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33972407

RESUMO

Ocean warming and acidification threaten the future growth of coral reefs. This is because the calcifying coral reef taxa that construct the calcium carbonate frameworks and cement the reef together are highly sensitive to ocean warming and acidification. However, the global-scale effects of ocean warming and acidification on rates of coral reef net carbonate production remain poorly constrained despite a wealth of studies assessing their effects on the calcification of individual organisms. Here, we present global estimates of projected future changes in coral reef net carbonate production under ocean warming and acidification. We apply a meta-analysis of responses of coral reef taxa calcification and bioerosion rates to predicted changes in coral cover driven by climate change to estimate the net carbonate production rates of 183 reefs worldwide by 2050 and 2100. We forecast mean global reef net carbonate production under representative concentration pathways (RCP) 2.6, 4.5, and 8.5 will decline by 76, 149, and 156%, respectively, by 2100. While 63% of reefs are projected to continue to accrete by 2100 under RCP2.6, 94% will be eroding by 2050 under RCP8.5, and no reefs will continue to accrete at rates matching projected sea level rise under RCP4.5 or 8.5 by 2100. Projected reduced coral cover due to bleaching events predominately drives these declines rather than the direct physiological impacts of ocean warming and acidification on calcification or bioerosion. Presently degraded reefs were also more sensitive in our analysis. These findings highlight the low likelihood that the world's coral reefs will maintain their functional roles without near-term stabilization of atmospheric CO2 emissions.


Assuntos
Antozoários/fisiologia , Carbonato de Cálcio/metabolismo , Mudança Climática , Recifes de Corais , Animais , Antozoários/química , Carbonato de Cálcio/química , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química
3.
Sci Data ; 8(1): 84, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727570

RESUMO

This paper describes benthic coral reef community composition point-based field data sets derived from georeferenced photoquadrats using machine learning. Annually over a 17 year period (2002-2018), data were collected using downward-looking photoquadrats that capture an approximately 1 m2 footprint along 100 m-1500 m transect surveys distributed along the reef slope and across the reef flat of Heron Reef (28 km2), Southern Great Barrier Reef, Australia. Benthic community composition for the photoquadrats was automatically interpreted through deep learning, following initial manual calibration of the algorithm. The resulting data sets support understanding of coral reef biology, ecology, mapping and dynamics. Similar methods to derive the benthic data have been published for seagrass habitats, however here we have adapted the methods for application to coral reef habitats, with the integration of automatic photoquadrat analysis. The approach presented is globally applicable for various submerged and benthic community ecological applications, and provides the basis for further studies at this site, regional to global comparative studies, and for the design of similar monitoring programs elsewhere.


Assuntos
Biota , Recifes de Corais , Animais , Austrália
4.
Sci Data ; 7(1): 355, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082344

RESUMO

Addressing the global decline of coral reefs requires effective actions from managers, policymakers and society as a whole. Coral reef scientists are therefore challenged with the task of providing prompt and relevant inputs for science-based decision-making. Here, we provide a baseline dataset, covering 1300 km of tropical coral reef habitats globally, and comprised of over one million geo-referenced, high-resolution photo-quadrats analysed using artificial intelligence to automatically estimate the proportional cover of benthic components. The dataset contains information on five major reef regions, and spans 2012-2018, including surveys before and after the 2016 global bleaching event. The taxonomic resolution attained by image analysis, as well as the spatially explicit nature of the images, allow for multi-scale spatial analyses, temporal assessments (decline and recovery), and serve for supporting image recognition developments. This standardised dataset across broad geographies offers a significant contribution towards a sound baseline for advancing our understanding of coral reef ecology and thereby taking collective and informed actions to mitigate catastrophic losses in coral reefs worldwide.


Assuntos
Recifes de Corais , Monitoramento Ambiental , Animais , Antozoários/classificação , Inteligência Artificial , Planeta Terra
5.
PLoS One ; 15(10): e0240846, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33108387

RESUMO

Coral reef ecosystems are under increasing pressure from local and regional stressors and a changing climate. Current management focuses on reducing stressors to allow for natural recovery, but in many areas where coral reefs are damaged, natural recovery can be restricted, delayed or interrupted because of unstable, unconsolidated coral fragments, or rubble. Rubble fields are a natural component of coral reefs, but repeated or high-magnitude disturbances can prevent natural cementation and consolidation processes, so that coral recruits fail to survive. A suite of interventions have been used to target this issue globally, such as using mesh to stabilise rubble, removing the rubble to reveal hard substrate and deploying rocks or other hard substrates over the rubble to facilitate recruit survival. Small, modular structures can be used at multiple scales, with or without attached coral fragments, to create structural complexity and settlement surfaces. However, these can introduce foreign materials to the reef, and a limited understanding of natural recovery processes exists for the potential of this type of active intervention to successfully restore local coral reef structure. This review synthesises available knowledge about the ecological role of coral rubble, natural coral recolonisation and recovery rates and the potential benefits and risks associated with active interventions in this rapidly evolving field. Fundamental knowledge gaps include baseline levels of rubble, the structural complexity of reef habitats in space and time, natural rubble consolidation processes and the risks associated with each intervention method. Any restoration intervention needs to be underpinned by risk assessment, and the decision to repair rubble fields must arise from an understanding of when and where unconsolidated substrate and lack of structure impair natural reef recovery and ecological function. Monitoring is necessary to ascertain the success or failure of the intervention and impacts of potential risks, but there is a strong need to specify desired outcomes, the spatial and temporal context and indicators to be measured. With a focus on the Great Barrier Reef, we synthesise the techniques, successes and failures associated with rubble stabilisation and the use of small structures, review monitoring methods and indicators, and provide recommendations to ensure that we learn from past projects.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Animais , Antozoários , Biodiversidade , Conservação dos Recursos Naturais/métodos , Monitorização de Parâmetros Ecológicos/métodos , Ecossistema , Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos
6.
Glob Chang Biol ; 26(5): 2785-2797, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32115808

RESUMO

Anticipating future changes of an ecosystem's dynamics requires knowledge of how its key communities respond to current environmental regimes. The Great Barrier Reef (GBR) is under threat, with rapid changes of its reef-building hard coral (HC) community structure already evident across broad spatial scales. While several underlying relationships between HC and multiple disturbances have been documented, responses of other benthic communities to disturbances are not well understood. Here we used statistical modelling to explore the effects of broad-scale climate-related disturbances on benthic communities to predict their structure under scenarios of increasing disturbance frequency. We parameterized a multivariate model using the composition of benthic communities estimated by 145,000 observations from the northern GBR between 2012 and 2017. During this time, surveyed reefs were variously impacted by two tropical cyclones and two heat stress events that resulted in extensive HC mortality. This unprecedented sequence of disturbances was used to estimate the effects of discrete versus interacting disturbances on the compositional structure of HC, soft corals (SC) and algae. Discrete disturbances increased the prevalence of algae relative to HC while the interaction between cyclones and heat stress was the main driver of the increase in SC relative to algae and HC. Predictions from disturbance scenarios included relative increases in algae versus SC that varied by the frequency and types of disturbance interactions. However, high uncertainty of compositional changes in the presence of several disturbances shows that responses of algae and SC to the decline in HC needs further research. Better understanding of the effects of multiple disturbances on benthic communities as a whole is essential for predicting the future status of coral reefs and managing them in the light of new environmental regimes. The approach we develop here opens new opportunities for reaching this goal.


Assuntos
Antozoários , Tempestades Ciclônicas , Animais , Recifes de Corais , Ecossistema
7.
Nat Commun ; 9(1): 3447, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181537

RESUMO

Our rapidly warming climate is threatening coral reefs as thermal anomalies trigger mass coral bleaching events. Deep (or "mesophotic") coral reefs are hypothesised to act as major ecological refuges from mass bleaching, but empirical assessments are limited. We evaluated the potential of mesophotic reefs within the Great Barrier Reef (GBR) and adjacent Coral Sea to act as thermal refuges by characterising long-term temperature conditions and assessing impacts during the 2016 mass bleaching event. We found that summer upwelling initially provided thermal relief at upper mesophotic depths (40 m), but then subsided resulting in anomalously warm temperatures even at depth. Bleaching impacts on the deep reefs were severe (40% bleached and 6% dead colonies at 40 m) but significantly lower than at shallower depths (60-69% bleached and 8-12% dead at 5-25 m). While we confirm that deep reefs can offer refuge from thermal stress, we highlight important caveats in terms of the transient nature of the protection and their limited ability to provide broad ecological refuge.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Animais , Austrália , Ecossistema , Monitoramento Ambiental/métodos , Estações do Ano , Água do Mar , Temperatura
8.
R Soc Open Sci ; 5(4): 172226, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29765676

RESUMO

Aesthetic value, or beauty, is important to the relationship between humans and natural environments and is, therefore, a fundamental socio-economic attribute of conservation alongside other ecosystem services. However, beauty is difficult to quantify and is not estimated well using traditional approaches to monitoring coral-reef aesthetics. To improve the estimation of ecosystem aesthetic values, we developed and implemented a novel framework used to quantify features of coral-reef aesthetics based on people's perceptions of beauty. Three observer groups with different experience to reef environments (Marine Scientist, Experienced Diver and Citizen) were virtually immersed in Australian's Great Barrier Reef (GBR) using 360° images. Perceptions of beauty and observations were used to assess the importance of eight potential attributes of reef-aesthetic value. Among these, heterogeneity, defined by structural complexity and colour diversity, was positively associated with coral-reef-aesthetic values. There were no group-level differences in the way the observer groups perceived reef aesthetics suggesting that past experiences with coral reefs do not necessarily influence the perception of beauty by the observer. The framework developed here provides a generic tool to help identify indicators of aesthetic value applicable to a wide variety of natural systems. The ability to estimate aesthetic values robustly adds an important dimension to the holistic conservation of the GBR, coral reefs worldwide and other natural ecosystems.

9.
Ecol Evol ; 7(13): 4640-4650, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28690794

RESUMO

Historically, marine ecologists have lacked efficient tools that are capable of capturing detailed species distribution data over large areas. Emerging technologies such as high-resolution imaging and associated machine-learning image-scoring software are providing new tools to map species over large areas in the ocean. Here, we combine a novel diver propulsion vehicle (DPV) imaging system with free-to-use machine-learning software to semi-automatically generate dense and widespread abundance records of a habitat-forming algae over ~5,000 m2 of temperate reef. We employ replicable spatial techniques to test the effectiveness of traditional diver-based sampling, and better understand the distribution and spatial arrangement of one key algal species. We found that the effectiveness of a traditional survey depended on the level of spatial structuring, and generally 10-20 transects (50 × 1 m) were required to obtain reliable results. This represents 2-20 times greater replication than have been collected in previous studies. Furthermore, we demonstrate the usefulness of fine-resolution distribution modeling for understanding patterns in canopy algae cover at multiple spatial scales, and discuss applications to other marine habitats. Our analyses demonstrate that semi-automated methods of data gathering and processing provide more accurate results than traditional methods for describing habitat structure at seascape scales, and therefore represent vastly improved techniques for understanding and managing marine seascapes.

10.
Oecologia ; 181(1): 161-73, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26753672

RESUMO

Disturbance releases space and allows the growth of opportunistic species, excluded by the old stands, with a potential to alter community dynamics. In coral reefs, abundances of fast-growing, and disturbance-tolerant sponges are expected to increase and dominate as space becomes available following acute coral mortality events. Yet, an increase in abundance of these opportunistic species has been reported in only a few studies, suggesting certain mechanisms may be acting to regulate sponge populations. To gain insights into mechanisms of population control, we simulated the dynamics of the common reef-excavating sponge Cliona tenuis in the Caribbean using an individual-based model. An orthogonal hypothesis testing approach was used, where four candidate mechanisms-algal competition, stock-recruitment limitation, whole and partial mortality-were incorporated sequentially into the model and the results were tested against independent field observations taken over a decade in Belize, Central America. We found that releasing space after coral mortality can promote C. tenuis outbreaks, but such outbreaks can be curtailed by macroalgal competition. The asymmetrical competitive superiority of macroalgae, given by their capacity to pre-empt space and outcompete with the sponge in a size-dependant fashion, supports their capacity to steal the opportunity from other opportunists. While multiple system stages can be expected in coral reefs following intense perturbation macroalgae may prevent the growth of other space-occupiers, such as bioeroding sponges, under low grazing pressure.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Poríferos/fisiologia , Animais , Antozoários/crescimento & desenvolvimento , Belize , Região do Caribe , Modelos Biológicos , Dinâmica Populacional , Poríferos/crescimento & desenvolvimento , Alga Marinha/crescimento & desenvolvimento
11.
PLoS One ; 10(5): e0128535, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26009892

RESUMO

Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (<50 mm) coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%), whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals). For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21-50 mm) highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (<20 mm) had the highest influence on reef slope population dynamics. Our results provide insight into the population dynamics and recovery trajectories in disparate reef habitats, and highlight the importance of acroporid recruitment in driving rapid increases in coral cover following large-scale perturbation in reef slope environments.


Assuntos
Antozoários/crescimento & desenvolvimento , Animais , Antozoários/classificação , Austrália , Recifes de Corais , Dinâmica Populacional
12.
Glob Chang Biol ; 19(1): 273-81, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23504738

RESUMO

The detrimental effect of climate change induced bleaching on Caribbean coral reefs has been widely documented in recent decades. Several studies have suggested that increases in the abundance of thermally tolerant endosymbionts may ameliorate the effect of climate change on reefs. Symbionts that confer tolerance to temperature also reduce the growth rate of their coral host. Here, we show, using a spatial ecosystem model, that an increment in the abundance of a thermally tolerant endosymbiont (D1a) is unlikely to ensure the persistence of Caribbean reefs, or to reduce their rate of decline, due to the concomitant reduction in growth rate under current thermal stress predictive scenarios. Furthermore, our results suggest that given the documented vital rates of D1a-dominated corals, increasing dominance of D1a in coral hosts may have a detrimental effect by reducing the resilience of Caribbean reefs, and preventing their long-term recovery. This is because Caribbean ecosystems appear to be highly sensitive to changes in the somatic growth rate of corals. Alternative outcomes might be expected in systems with different community-level dynamics such as reefs in the Indo-Pacific, where the ecological costs of reduced growth rate might be far smaller.


Assuntos
Adaptação Fisiológica , Mudança Climática , Recifes de Corais , Simbiose , Temperatura , Animais , Região do Caribe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...