Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Public Health ; 17(10): 2251-2257, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34161184

RESUMO

This interview with Pau González, the co-founder of Hombres Trans Panamá (Trans Men Panama, HTP), the first trans men's organization in the country, explains how Panama's gender-based lockdown in response to the Covid-19 pandemic was a pivotal moment for the trans community. HTP was one of the national civil society organizations that spearheaded the response to the cases of anti-trans discrimination under the gendered measures, urging the government to issue guidelines that would allow trans people to circulate based on their gender identity and, later, to scrap the measure altogether. González explains how the lockdown not only exacerbated the structural inequalities that trans people in the country already experienced, but also forced them to reimagine their community and their activism.


Assuntos
COVID-19 , Pessoas Transgênero , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Feminino , Identidade de Gênero , Humanos , Masculino , Panamá/epidemiologia , Pandemias
2.
J Comp Neurol ; 530(2): 553-573, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34363623

RESUMO

Neurons can change their classical neurotransmitters during ontogeny, sometimes going through stages of dual release. Here, we explored the development of the neurotransmitter identity of neurons of the avian nucleus isthmi parvocellularis (Ipc), whose axon terminals are retinotopically arranged in the optic tectum (TeO) and exert a focal gating effect upon the ascending transmission of retinal inputs. Although cholinergic and glutamatergic markers are both found in Ipc neurons and terminals of adult pigeons and chicks, the mRNA expression of the vesicular acetylcholine transporter, VAChT, is weak or absent. To explore how the Ipc neurotransmitter identity is established during ontogeny, we analyzed the expression of mRNAs coding for cholinergic (ChAT, VAChT, and CHT) and glutamatergic (VGluT2 and VGluT3) markers in chick embryos at different developmental stages. We found that between E12 and E18, Ipc neurons expressed all cholinergic mRNAs and also VGluT2 mRNA; however, from E16 through posthatch stages, VAChT mRNA expression was specifically diminished. Our ex vivo deposits of tracer crystals and intracellular filling experiments revealed that Ipc axons exhibit a mature paintbrush morphology late in development, experiencing marked morphological transformations during the period of presumptive dual vesicular transmitter release. Additionally, although ChAT protein immunoassays increasingly label the growing Ipc axon, this labeling was consistently restricted to sparse portions of the terminal branches. Combined, these results suggest that the synthesis of glutamate and acetylcholine, and their vesicular release, is complexly linked to the developmental processes of branching, growing and remodeling of these unique axons.


Assuntos
Galinhas/anatomia & histologia , Columbidae/anatomia & histologia , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Colículos Superiores/citologia , Acetilcolina/metabolismo , Animais , Colina O-Acetiltransferase/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
3.
Front Neural Circuits ; 15: 769342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867214

RESUMO

The firing activity of ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) dopaminergic (DA) neurons is an important factor in shaping DA release and its role in motivated behavior. Dendrites in DA neurons are the main postsynaptic compartment and, along with cell body and axon initial segment, contribute to action potential generation and firing pattern. In this study, the organization of the dendritic domain in individual VTA and SNc DA neurons of adult male mice, and their relationship to in vivo spontaneous firing, are described. In comparison with dorsal VTA DA neurons, ventrally located VTA neurons (as measured by cell body location) possess a shorter total dendritic length and simpler dendritic architecture, and exhibit the most irregular in vivo firing patterns among DA neurons. In contrast, for DA neurons in the SNc, the higher irregularity of firing was related to a smaller dendritic domain, as measured by convex hull volumes. However, firing properties were also related to the specific regional distribution of the dendritic tree. Thus, VTA DA neurons with a larger extension of their dendritic tree within the parabrachial pigmented (PBP) nucleus fired more regularly compared with those with relatively more dendrites extending outside the PBP. For DA neurons in the SNc, enhanced firing irregularity was associated with a smaller proportion of dendrites penetrating the substantia nigra pars reticulata. These results suggest that differences in dendritic morphology contribute to the in vivo firing properties of individual DA neurons, and that the existence of region-specific synaptic connectivity rules that shape firing diversity.


Assuntos
Neurônios Dopaminérgicos , Área Tegmentar Ventral , Potenciais de Ação , Animais , Masculino , Camundongos , Substância Negra
4.
J Comp Neurol ; 527(2): 372-391, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30255930

RESUMO

A defining feature of the amniote tecto-fugal visual pathway is a massive bilateral projection to the thalamus originating from a distinct neuronal population, tectal ganglion cells (TGCs), of the optic tectum/superior colliculus (TeO/SC). In sauropsids, the thalamic target of the tecto-fugal pathway is the nucleus rotundus thalami (Rt). TGCs axons collateralize en route to Rt to target the nucleus pretectalis principalis (PT), which in turn gives rise to bilateral projection to the TeO. In rodents, the thalamic target of these TGCs afferents is the caudal division of the pulvinar complex (PulC). No pretectal structures in receipt of TGC collaterals have been described in this group. However, Baldwin et al. (Journal of Comparative Neurology, 2011;519(6):1071-1094) reported in the squirrel a feedback projection from the PulC to the SC. Pulvino-tectal (Pul-T) cells lie at the caudal pole of the PulC, intermingled with the axonal terminals of TGCs. Here, by performing a combination of neuronal tracing, immunohistochemistry, immunofluorescence, and in situ hybridization, we characterized the pattern of projections, neurochemical profile, and genoarchitecture of Pul-T cells in the diurnal Chilean rodent Octodon degus. We found that Pul-T neurons exhibit pretectal, but not thalamic, genoarchitectonical markers, as well as hodological and neurochemical properties that match specifically those of the avian nucleus PT. Thus, we propose that Pul-T cells constitute a pretectal cell population hidden within the dorsal thalamus of mammals. Our results solve the oddity entailed by the apparent existence of a noncanonic descending sensory thalamic projection and further stress the conservative character of the tectofugal pathway.


Assuntos
Octodon/anatomia & histologia , Pulvinar/anatomia & histologia , Animais , Feminino , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Octodon/metabolismo , Pulvinar/metabolismo , Teto do Mesencéfalo/anatomia & histologia , Teto do Mesencéfalo/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(32): E7615-E7623, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30026198

RESUMO

The optic tectum (TeO), or superior colliculus, is a multisensory midbrain center that organizes spatially orienting responses to relevant stimuli. To define the stimulus with the highest priority at each moment, a network of reciprocal connections between the TeO and the isthmi promotes competition between concurrent tectal inputs. In the avian midbrain, the neurons mediating enhancement and suppression of tectal inputs are located in separate isthmic nuclei, facilitating the analysis of the neural processes that mediate competition. A specific subset of radial neurons in the intermediate tectal layers relay retinal inputs to the isthmi, but at present it is unclear whether separate neurons innervate individual nuclei or a single neural type sends a common input to several of them. In this study, we used in vitro neural tracing and cell-filling experiments in chickens to show that single neurons innervate, via axon collaterals, the three nuclei that comprise the isthmotectal network. This demonstrates that the input signals representing the strength of the incoming stimuli are simultaneously relayed to the mechanisms promoting both enhancement and suppression of the input signals. By performing in vivo recordings in anesthetized chicks, we also show that this common input generates synchrony between both antagonistic mechanisms, demonstrating that activity enhancement and suppression are closely coordinated. From a computational point of view, these results suggest that these tectal neurons constitute integrative nodes that combine inputs from different sources to drive in parallel several concurrent neural processes, each performing complementary functions within the network through different firing patterns and connectivity.


Assuntos
Comportamento Animal/fisiologia , Galinhas/fisiologia , Neurônios/fisiologia , Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Animais , Técnicas de Rastreamento Neuroanatômico/métodos , Estimulação Luminosa , Colículos Superiores/citologia
6.
J Comp Neurol ; 525(16): 3529-3542, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28734032

RESUMO

The axon initial segment (AIS) is the site of initiation of action potentials and influences action potential waveform, firing pattern, and rate. In view of the fundamental aspects of motor function and behavior that depend on the firing of substantia nigra pars compacta (SNc) dopaminergic neurons, we identified and characterized their AIS in the mouse. Immunostaining for tyrosine hydroxylase (TH), sodium channels (Nav ) and ankyrin-G (Ank-G) was used to visualize the AIS of dopaminergic neurons. Reconstructions of sampled AIS of dopaminergic neurons revealed variable lengths (12-60 µm) and diameters (0.2-0.8 µm), and an average of 50% reduction in diameter between their widest and thinnest parts. Ultrastructural analysis revealed submembranous localization of Ank-G at nodes of Ranvier and AIS. Serial ultrathin section analysis and 3D reconstructions revealed that Ank-G colocalized with TH only at the AIS. Few cases of synaptic innervation of the AIS of dopaminergic neurons were observed. mRNA in situ hybridization of brain-specific Nav subunits revealed the expression of Nav 1.2 by most SNc neurons and a small proportion expressing Nav 1.6. The presence of sodium channels, along with the submembranous location of Ank-G is consistent with the role of AIS in action potential generation. Differences in the size of the AIS likely underlie differences in firing pattern, while the tapering diameter of AIS may define a trigger zone for action potentials. Finally, the conspicuous expression of Nav 1.2 by the majority of dopaminergic neurons may explain their high threshold for firing and their low discharge rate.


Assuntos
Segmento Inicial do Axônio/fisiologia , Neurônios Dopaminérgicos/citologia , Substância Negra/citologia , Potenciais de Ação/fisiologia , Animais , Anquirinas/metabolismo , Anquirinas/ultraestrutura , Segmento Inicial do Axônio/ultraestrutura , Expressão Gênica/fisiologia , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/ultraestrutura , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/ultraestrutura , Neuroimagem , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/ultraestrutura
7.
J Comp Neurol ; 524(11): 2208-29, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26659271

RESUMO

The avian pretectal and ventrothalamic nuclei, encompassing the griseum tectale (GT), n. lentiformis mesencephali (LM), and n. geniculatus lateralis pars ventralis (GLv), are prominent retinorecipient structures related to optic flow operations and visuomotor control. Hence, a close coordination of these neural circuits is to be expected. Yet the connectivity among these nuclei is poorly known. Here, using intracellular labeling and in situ hybridization, we investigated the detailed morphology, connectivity, and neurochemical identity of neurons in these nuclei. Two different cell types exist in the GT: one that generates an axonal projection to the optic tectum (TeO), LM, GLv, and n. intercalatus thalami (ICT), and a second population that only projects to the LM and GLv. In situ hybridization revealed that most neurons in the GT express the vesicular glutamate transporter (VGluT2) mRNA, indicating a glutamatergic identity. In the LM, three morphological cell types were defined, two of which project axons towards dorsal targets. The LM neurons showed strong VGluT2 expression. Finally, the cells located in the GLv project to the TeO, LM, GT, n. principalis precommisuralis (PPC), and ICT. All neurons in the GLv showed strong expression of the vesicular inhibitory amino acid transporter (VIAAT) mRNA, suggesting a GABAergic identity. Our results show that the pretectal and ventrothalamic nuclei are highly interconnected, especially by glutamatergic and GABAergic neurons from the GT and GLv, respectively. This complex morphology and connectivity might be required to organize orienting visuomotor behaviors and coordinate the specific optic flow patterns that they induce. J. Comp. Neurol. 524:2208-2229, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Área Pré-Tectal/citologia , Tálamo/citologia , Vias Visuais/citologia , Animais , Galinhas , Hibridização In Situ , Neurônios/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Comp Neurol ; 524(2): 362-79, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26224333

RESUMO

The optic tectum in birds and its homologue the superior colliculus in mammals both send major bilateral, nontopographic projections to the nucleus rotundus and caudal pulvinar, respectively. These projections originate from widefield tectal ganglion cells (TGCs) located in layer 13 in the avian tectum and in the lower superficial layers in the mammalian colliculus. The TGCs characteristically have monostratified arrays of brush-like dendritic terminations and respond mostly to bidimensional motion or looming features. In birds, this TGC-mediated tectofugal output is controlled by feedback signals from the nucleus isthmi pars parvocellularis (Ipc). The Ipc neurons display topographically organized axons that densely ramify in restricted columnar terminal fields overlapping various neural elements that could mediate this tectofugal control, including the retinal terminals and the TGC dendrites themselves. Whether the Ipc axons make synaptic contact with these or other tectal neural elements remains undetermined. We double labeled Ipc axons and their presumptive postsynaptic targets in the tectum of chickens (Gallus gallus) with neural tracers and performed an ultrastructural analysis. We found that the Ipc terminal boutons form glomerulus-like structures in the superficial and intermediate tectal layers, establishing asymmetric synapses with several dendritic profiles. In these glomeruli, at least two of the postsynaptic dendrites originated from TGCs. We also found synaptic contacts between retinal terminals and TGC dendrites. These findings suggest that, in birds, Ipc axons control the ascending tectal outflow of retinal signals through direct synaptic contacts with the TGCs.


Assuntos
Dendritos/ultraestrutura , Gânglios Sensitivos/citologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Colículos Superiores/citologia , Vias Visuais/fisiologia , Animais , Galinhas , Toxina da Cólera/metabolismo , Feminino , Masculino , Microscopia Eletrônica , Modelos Anatômicos , Fito-Hemaglutininas , Terminações Pré-Sinápticas/ultraestrutura , Colículos Superiores/fisiologia
9.
J Comp Neurol ; 523(9): 1341-58, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25594665

RESUMO

Retinal inputs to the optic tectum (TeO) triggered by moving stimuli elicit synchronized feedback signals from two isthmic nuclei: the isthmi parvocelullaris (Ipc) and isthmi semilunaris (SLu). Both of these nuclei send columnar axon terminals back to the same tectal position receiving the retinal input. The feedback signals from the Ipc seem to act as an attentional spotlight by selectively boosting the propagation of retinal inputs from the tectum to higher visual areas. Although Ipc and SLu nuclei are widely considered cholinergic because of their immunoreactivity for choline acetyltransferase (ChAT), contradictory findings, including the expression of the vesicular glutamate transporter 2 (VGluT2) mRNA in Ipc neurons, have raised doubts about the purely cholinergic nature of this nucleus. In this study, in chicks, we revise the neurochemical identity of the isthmic nuclei by using in situ hybridization assays for VGluT2 along with three cholinergic markers: the vesicular acetylcholine transporter (VAChT), the high-affinity choline transporter (CHT1) and ChAT. We found that neurons in the SLu showed strong mRNA expression of all three cholinergic markers, whereas the expression of VAChT mRNA in the Ipc was undetectable in our essays. Instead, Ipc neurons exhibited a strong expression of VGluT2 mRNA. Immunohistochemistry assays showed VGluT2 immunoreactivity in the TeO codistributing with anterogradely labeled Ipc axon-terminal boutons, further supporting a glutamatergic function for the Ipc nucleus. Therefore, our results strongly suggest that, in the chick, whereas the feedback from the SLu to the TeO is indeed cholinergic, the feedback from the Ipc has a marked glutamatergic component.


Assuntos
Galinhas/metabolismo , Retroalimentação Fisiológica/fisiologia , Colículos Superiores/metabolismo , Vias Visuais/metabolismo , Animais , Proteínas Aviárias/metabolismo , Galinhas/anatomia & histologia , Colina O-Acetiltransferase/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Membrana Transportadoras/metabolismo , Técnicas de Rastreamento Neuroanatômico , Neurônios/citologia , Neurônios/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Colículos Superiores/anatomia & histologia , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Vias Visuais/anatomia & histologia
10.
Front Zool ; 11(1): 33, 2014 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-24725625

RESUMO

BACKGROUND: The homology of the digits in the bird wing is a high-profile controversy in developmental and evolutionary biology. The embryonic position of the digits cartilages with respect to the primary axis (ulnare and ulna) corresponds to 2, 3, 4, but comparative-evolutionary morphology supports 1, 2, 3. A homeotic frameshift of digit identity in evolution could explain how cells in embryonic positions 2, 3, 4 began developing morphologies 1, 2, 3. Another alternative is that no re-patterning of cell fates occurred, and the primary axis shifted its position by some other mechanism. In the wing, only the anterior digit lacks expression of HoxD10 and HoxD12, resembling digit 1 of other limbs, as predicted by 1, 2, 3. However, upon loss of digit 1 in evolution, the most anterior digit 2 could have lost their expression, deceitfully resembling a digit 1. To test this notion, we observed HoxD10 and HoxD12 in a limb where digit 2 is the most anterior digit: The rabbit foot. We also explored whether early inhibition of Shh signalling in the embryonic wing bud induces an experimental homeotic frameshift, or an experimental axis shift. We tested these hypotheses using DiI injections to study the fate of cells in these experimental wings. RESULTS: We found strong transcription of HoxD10 and HoxD12 was present in the most anterior digit 2 of the rabbit foot. Thus, we found no evidence to question the use of HoxD expression as support for 1, 2, 3. When Shh signalling in early wing buds is inhibited, our fate maps demonstrate that an experimental homeotic frameshift is induced. CONCLUSION: Along with comparative morphology, HoxD expression provides strong support for 1, 2, 3 identity of wing digits. As an explanation for the offset 2, 3, 4 embryological position, the homeotic frameshift hypothesis is consistent with known mechanisms of limb development, and further proven to be experimentally possible. In contrast, the underlying mechanisms and experimental plausibility of an axis shift remain unclear.

11.
J Neurosci ; 32(3): 1110-22, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22262908

RESUMO

When a salient object in the visual field captures attention, the neural representation of that object is enhanced at the expense of competing stimuli. How neural activity evoked by a salient stimulus evolves to take precedence over the neural activity evoked by other stimuli is a matter of intensive investigation. Here, we describe in pigeons (Columba livia) how retinal inputs to the optic tectum (TeO, superior colliculus in mammals), triggered by moving stimuli, are selectively relayed on to the rotundus (Rt, caudal pulvinar) in the thalamus, and to its pallial target, the entopallium (E, extrastriate cortex). We show that two satellite nuclei of the TeO, the nucleus isthmi parvocelullaris (Ipc) and isthmi semilunaris (SLu), send synchronized feedback signals across tectal layers. Preventing the feedback from Ipc but not from SLu to a tectal location suppresses visual responses to moving stimuli from the corresponding region of visual space in all Rt subdivisions. In addition, the bursting feedback from the Ipc imprints a bursting rhythm on the visual signals, such that the visual responses of the Rt and the E acquire a bursting modulation significantly synchronized to the feedback from Ipc. As the Ipc feedback signals are selected by competitive interactions, the visual responses within the receptive fields in the Rt tend to synchronize with the tectal location receiving the "winning" feedback from Ipc. We propose that this selective transmission of afferent activity combined with the cross-regional synchronization of the areas involved represents a bottom-up mechanism by which salient stimuli capture attention.


Assuntos
Potenciais de Ação/fisiologia , Atenção/fisiologia , Retroalimentação Fisiológica/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Colículos Superiores/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Animal , Mapeamento Encefálico , Columbidae , Antagonistas de Aminoácidos Excitatórios/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Masculino , Percepção de Movimento/fisiologia , Inibição Neural , Neurônios/efeitos dos fármacos , Estimulação Luminosa/métodos , Estatísticas não Paramétricas , Colículos Superiores/citologia , Colículos Superiores/efeitos dos fármacos , Campos Visuais/efeitos dos fármacos , Campos Visuais/fisiologia , Vias Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...