Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18155, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875514

RESUMO

The development of high intensity petawatt lasers has created new possibilities for ion acceleration and nuclear fusion using solid targets. In such laser-matter interaction, multiple ion species are accelerated with broad spectra up to hundreds of MeV. To measure ion yields and for species identification, CR-39 solid-state nuclear track detectors are frequently used. However, these detectors are limited in their applicability for multi-ion spectra differentiation as standard image recognition algorithms can lead to a misinterpretation of data, there is no unique relation between track diameter and particle energy, and there are overlapping pit diameter relationships for multiple particle species. In this report, we address these issues by first developing an algorithm to overcome user bias during image processing. Second, we use calibration of the detector response for protons, carbon and helium ions (alpha particles) from 0.1 to above 10 MeV and measurements of statistical energy loss fluctuations in a forward-fitting procedure utilizing multiple, differently filtered CR-39, altogether enabling high-sensitivity, multi-species particle spectroscopy. To validate this capability, we show that inferred CR-39 spectra match Thomson parabola ion spectrometer data from the same experiment. Filtered CR-39 spectrometers were used to detect, within a background of ~ 2 × 1011 sr-1 J-1 protons and carbons, (1.3 ± 0.7) × 108 sr-1 J-1 alpha particles from laser-driven proton-boron fusion reactions.

2.
Sci Rep ; 10(1): 105, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919383

RESUMO

The spatio-temporal and polarisation properties of intense light is important in wide-ranging topics at the forefront of extreme light-matter interactions, including ultrafast laser-driven particle acceleration, attosecond pulse generation, plasma photonics, high-field physics and laboratory astrophysics. Here, we experimentally demonstrate modifications to the polarisation and temporal properties of intense light measured at the rear of an ultrathin target foil irradiated by a relativistically intense laser pulse. The changes are shown to result from a superposition of coherent radiation, generated by a directly accelerated bipolar electron distribution, and the light transmitted due to the onset of relativistic self-induced transparency. Simulations show that the generated light has a high-order transverse electromagnetic mode structure in both the first and second laser harmonics that can evolve on intra-pulse time-scales. The mode structure and polarisation state vary with the interaction parameters, opening up the possibility of developing this approach to achieve dynamic control of structured light fields at ultrahigh intensities.

3.
Opt Express ; 27(4): 4416-4423, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876060

RESUMO

We introduce a new approach to temporally resolve ultrafast micron-scale processes via the use of a multi-channel optical probe. We demonstrate that this technique enables highly precise time-resolved, two-dimensional spatial imaging of intense laser pulse propagation dynamics, plasma formation and laser beam filamentation within a single pulse over four distinct time frames. The design, development and optimization of the optical probe system is presented, as are representative experimental results from the first implementation of the multi-channel probe with a high-power laser pulse interaction with a helium gas jet target.

4.
Phys Rev Lett ; 111(9): 095001, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24033041

RESUMO

Fast electron transport in Si, driven by ultraintense laser pulses, is investigated experimentally and via 3D hybrid particle-in-cell simulations. A transition from a Gaussian-like to an annular fast electron beam profile is demonstrated and explained by resistively generated magnetic fields. The results highlight the potential to completely transform the beam transport pattern by tailoring the resistivity-temperature profile at temperatures as low as a few eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...